This booklet gives information on courses offered in the Faculty of Science and Technology at the Cave Hill Campus of the University of the West Indies (Barbados). For courses offered at the other Campuses, please see Faculty booklets for the Mona (Jamaica) and St. Augustine (Trinidad & Tobago) Campuses and the Open Campus.

This Guide is intended for students entering the Faculty of Science and Technology from academic year 2019 - 2020. Continuing students must refer to Faculty Regulations that govern their year of entry – available on the Faculty website.

THE UNIVERSITY RESERVES THE RIGHT TO MAKE SUCH CHANGES TO THE CONTENTS OF THIS PUBLICATION AS MAY BE DEEMED NECESSARY.

Disclaimer:

The information in this booklet is accurate at the time of printing. Subsequent publications may therefore reflect updated information. Students should consult their Dean where clarification is required.
Table of Contents

INTRODUCTION TO THE FACULTY ... 10

STAFF OF THE FACULTY OF SCIENCE & TECHNOLOGY .. 11

FACULTY OFFICE & OFFICERS .. 11

CENTRE FOR RESOURCE MANAGEMENT AND ENVIRONMENTAL STUDIES (CERMES) 12

DEPARTMENT OF BIOLOGICAL AND CHEMICAL SCIENCES ... 14

BIOLOGICAL SCIENCES .. 14

CHEMICAL SCIENCES .. 15

ENVIRONMENTAL SCIENCE .. 17

DEPARTMENT OF COMPUTER SCIENCE, MATHEMATICS & PHYSICS ... 17

COMPUTER SCIENCE .. 17

MATHEMATICS ... 18

PHYSICS & ELECTRONICS ... 19

THE CARIBBEAN INSTITUTE FOR METEOROLOGY & HYDROLOGY (CIMH) ... 20

STUDENT AFFAIRS ... 23

APPLICATION PROCEDURE .. 24

INTERNATIONAL EXCHANGE/STUDY ABROAD PROGRAMME .. 25

UNIVERSITY REGULATIONS ON PLAGIARISM .. 26

PRIZES AWARDED ANNUALLY IN THE FACULTY OF SCIENCE AND TECHNOLOGY 30

THE GRAHAM GOODING BIOLOGY PRIZE ... 30

R. L. SEALE & CO. LTD. PRIZE IN CHEMISTRY .. 30

SYSTEMS CONSULTING LTD. (SCL) PRIZES ... 30

SYSTEMS CONSULTING LTD. (SCL) PRIZE IN MATHEMATICS .. 30

FACULTY PRIZE ... 31

DEAN’S PRIZES, FACULTY OF SCIENCE AND TECHNOLOGY ... 31

THE PFIZER CARIBBEAN SCIENCE PRIZE .. 31

LOUIS CHINNERY ECOLOGY PRIZE .. 31

DEAN’S LIST REGULATIONS .. 32

GLOSSARY TO THE REGULATIONS .. 33

FACULTY REGULATIONS FOR THE DEGREE OF BACHELOR OF .. 35

SCIENCE ... 35

A. QUALIFICATION FOR ADMISSION ... 35
A. PROGRAMMES WITH THE FACULTY OF SOCIAL SCIENCES ..51
 BSc COMPUTER SCIENCE AND ACCOUNTING ... 52
 BSc COMPUTER SCIENCE WITH ACCOUNTING .. 53
 BSc COMPUTER SCIENCE AND ECONOMICS .. 54
 BSc COMPUTER SCIENCE WITH ECONOMICS .. 55
 BSc COMPUTER SCIENCE AND MANAGEMENT .. 56
 BSc COMPUTER SCIENCE WITH MANAGEMENT ... 57
 BSc INFORMATION TECHNOLOGY AND ACCOUNTING ... 58
 BSc INFORMATION TECHNOLOGY WITH ACCOUNTING ... 59
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc INFORMATION TECHNOLOGY AND ECONOMICS</td>
<td>60</td>
</tr>
<tr>
<td>BSc INFORMATION TECHNOLOGY WITH ECONOMICS</td>
<td>61</td>
</tr>
<tr>
<td>BSc INFORMATION TECHNOLOGY AND MANAGEMENT</td>
<td>62</td>
</tr>
<tr>
<td>BSc INFORMATION TECHNOLOGY WITH MANAGEMENT</td>
<td>63</td>
</tr>
<tr>
<td>BSc MATHEMATICS AND ACCOUNTING</td>
<td>64</td>
</tr>
<tr>
<td>BSc MATHEMATICS WITH ACCOUNTING</td>
<td>65</td>
</tr>
<tr>
<td>BSc MATHEMATICS AND ECONOMICS</td>
<td>66</td>
</tr>
<tr>
<td>BSc MATHEMATICS WITH ECONOMICS</td>
<td>67</td>
</tr>
<tr>
<td>SCIENCE AND MANAGEMENT</td>
<td>68</td>
</tr>
<tr>
<td>SCIENCE WITH MANAGEMENT</td>
<td>69</td>
</tr>
<tr>
<td>BSc CHEMISTRY AND MANAGEMENT</td>
<td>70</td>
</tr>
<tr>
<td>BSc CHEMISTRY WITH MANAGEMENT</td>
<td>71</td>
</tr>
<tr>
<td>BSc ENVIRONMENTAL SCIENCE AND MANAGEMENT</td>
<td>72</td>
</tr>
<tr>
<td>BSc ENVIRONMENTAL SCIENCE WITH MANAGEMENT</td>
<td>73</td>
</tr>
<tr>
<td>BSc METEOROLOGY AND MANAGEMENT</td>
<td>74</td>
</tr>
<tr>
<td>BSc METEOROLOGY WITH MANAGEMENT</td>
<td>75</td>
</tr>
<tr>
<td>B. PROGRAMMES WITH THE FACULTY OF HUMANITIES & EDUCATION</td>
<td>76</td>
</tr>
<tr>
<td>SCIENCE AND PSYCHOLOGY</td>
<td>77</td>
</tr>
<tr>
<td>SCIENCE WITH PSYCHOLOGY</td>
<td>78</td>
</tr>
<tr>
<td>SCIENCE WITH SPANISH</td>
<td>79</td>
</tr>
<tr>
<td>SCIENCE WITH EDUCATION</td>
<td>80</td>
</tr>
<tr>
<td>BSc BIOLOGY WITH EDUCATION</td>
<td>81</td>
</tr>
<tr>
<td>BSc BIOLOGY AND PSYCHOLOGY</td>
<td>82</td>
</tr>
<tr>
<td>BSc BIOLOGY WITH PSYCHOLOGY</td>
<td>83</td>
</tr>
<tr>
<td>BSc CHEMISTRY WITH EDUCATION</td>
<td>84</td>
</tr>
<tr>
<td>BSc CHEMISTRY AND PSYCHOLOGY</td>
<td>85</td>
</tr>
<tr>
<td>BSc CHEMISTRY WITH PSYCHOLOGY</td>
<td>86</td>
</tr>
<tr>
<td>BSc COMPUTER SCIENCE WITH EDUCATION</td>
<td>87</td>
</tr>
<tr>
<td>BSc ELECTRONICS WITH EDUCATION</td>
<td>88</td>
</tr>
<tr>
<td>BSc INFORMATION TECHNOLOGY WITH EDUCATION</td>
<td>89</td>
</tr>
<tr>
<td>BSc MATHEMATICS WITH EDUCATION</td>
<td>90</td>
</tr>
<tr>
<td>BSc METEOROLOGY WITH EDUCATION</td>
<td>91</td>
</tr>
</tbody>
</table>
BSc PHYSICS WITH EDUCATION ...92

COURSES BY SEMESTER: BIOLOGICAL AND CHEMICAL SCIENCES ...93

BIOLOGICAL SCIENCES ..95

MAJOR IN BIOCHEMISTRY ...95

MINOR IN BIOCHEMISTRY ..96

MAJOR IN BIOLOGY ...97

MINOR IN BIOLOGY ...98

DOUBLE MAJOR IN BIOLOGICAL SCIENCES ...99

MAJOR IN ECOLOGY ...100

MINOR IN ECOLOGY ...101

MAJOR IN MICROBIOLOGY ..102

MINOR IN MICROBIOLOGY ..102

CHEMICAL SCIENCES ...103

MAJOR IN CHEMISTRY ..103

MINOR IN CHEMISTRY ..103

DOUBLE MAJOR IN CHEMISTRY ...104

ENVIRONMENTAL SCIENCE ..106

MAJOR IN ENVIRONMENTAL SCIENCE ...106

MINOR IN ENVIRONMENTAL SCIENCE ...107

PROGRAMME STRUCTURE ...108

BIOLOGICAL SCIENCES; CHEMICAL SCIENCES; ENVIRONMENTAL SCIENCES ...108

BSc BIOCHEMISTRY ...108

BSc BIOLOGY ...109

BSc DOUBLE MAJOR IN BIOLOGICAL SCIENCES ...110

BSc ECOLOGY ..111

BSc MICROBIOLOGY ...112

BSc CHEMISTRY ..113

BSc CHEMISTRY (DOUBLE) ..114

BSc BIOCHEMISTRY AND CHEMISTRY ...115

BSc BIOLOGY AND CHEMISTRY ..116

BSc ENVIRONMENTAL SCIENCE ...117

BSc BIOLOGY AND ENVIRONMENTAL SCIENCE ...118
BSc CHEMISTRY AND ENVIRONMENTAL SCIENCE .. 119
BSc ECOLOGY AND ENVIRONMENTAL SCIENCENCE .. 120
BSc ENVIRONMENTAL SCIENCE AND METEOROLOGY ... 121

BIOLOGICAL SCIENCE COURSES .. 122
PRELIMINARY BIOLOGICAL SCIENCE COURSES .. 122
LEVEL I BIOLOGICAL SCIENCE COURSES .. 123
LEVEL II BIOLOGICAL SCIENCE COURSES .. 126
LEVEL III BIOLOGICAL SCIENCE COURSES .. 136

CHEMISTRY COURSES ... 147
PRELIMINARY CHEMISTRY COURSES ... 147
LEVEL I CHEMISTRY COURSES .. 149
LEVEL II CHEMISTRY COURSES .. 151
LEVEL III CHEMISTRY COURSES .. 155

ENVIRONMENTAL SCIENCE COURSES ... 162
LEVEL I ENVIRONMENTAL SCIENCE COURSES .. 162
LEVEL II ENVIRONMENTAL SCIENCE COURSES ... 163
LEVEL III ENVIRONMENTAL SCIENCE COURSES ... 166

COURSES BY SEMESTER: COMPUTER SCIENCE, SOFTWARE ENGINEERING, ELECTRONICS, MATHEMATICS AND PHYSICS: .. 169
COURSES BY SEMESTER: METEOROLOGY ... 172

COMPUTER SCIENCE, INFORMATION TECHNOLOGY AND SOFTWARE ENGINEERING .. 173
MAJOR IN COMPUTER SCIENCE .. 174
MINOR IN COMPUTER SCIENCE .. 175
MAJOR IN INFORMATION TECHNOLOGY .. 176
MINOR IN INFORMATION TECHNOLOGY .. 177
DOUBLE MAJOR IN COMPUTER SCIENCE .. 178
MAJOR IN SOFTWARE ENGINEERING (UWICIIT) ... 181

ELECTRONICS .. 182
MAJOR IN ELECTRONICS .. 182
MINOR IN ELECTRONICS .. 183
MINOR IN MEDICAL ELECTRONICS .. 183

MATHEMATICS ... 185
MAJOR IN MATHEMATICS ... 185
MINOR IN MATHEMATICS ... 186
DOUBLE MAJOR IN MATHEMATICS .. 186
METEOROLOGY .. 188
MAJOR IN METEOROLOGY .. 188
MINOR IN METEOROLOGY .. 188
PHYSICS .. 190
MAJOR IN PHYSICS .. 190
MINOR IN PHYSICS .. 191
PROGRAMME STRUCTURE .. 193
COMPUTER SCIENCE, ELECTRONICS, INFORMATION TECHNOLOGY, MATHEMATICS,
SOFTWARE ENGINEERING, PHYSICS AND METEOROLOGY ... 193
BSc COMPUTER SCIENCE .. 193
BSc INFORMATION TECHNOLOGY ... 194
BSc ELECTRONICS .. 195
BSc MATHEMATICS ... 196
BSc MATHEMATICS (DOUBLE) .. 197
BSc METEOROLOGY ... 198
BSc PHYSICS .. 199
BSc COMPUTER SCIENCE DOUBLE .. 200
BSc COMPUTER SCIENCE AND ELECTRONICS ... 202
BSc COMPUTER SCIENCE AND MATHEMATICS ... 203
BSc COMPUTER SCIENCE AND METEOROLOGY ... 204
BSc COMPUTER SCIENCE AND PHYSICS .. 205
BSc ELECTRONICS AND INFORMATION TECHNOLOGY ... 206
BSc ELECTRONICS AND MATHEMATICS .. 207
BSc ELECTRONICS AND METEOROLOGY .. 208
BSc ELECTRONICS AND PHYSICS .. 209
BSc INFORMATION TECHNOLOGY AND MATHEMATICS ... 210
BSc INFORMATION TECHNOLOGY AND METEOROLOGY ... 211
BSc INFORMATION TECHNOLOGY AND PHYSICS ... 212
BSc MATHEMATICS AND METEOROLOGY ... 213
BSc MATHEMATICS AND PHYSICS .. 214
BSc METEOROLOGY AND PHYSICS .. 215
INTRODUCTION TO THE FACULTY

The University of the West Indies is a regional and international institution primarily serving the needs of the Commonwealth Caribbean. Established in 1948 at Mona, Jamaica, as a college in special relationship with the University of London, it received full university status in 1962, as an independent degree granting institution. In 1960, a second campus was established at St Augustine, Trinidad, and in 1963 teaching started in Barbados, first at a temporary site at the Bridgetown Port and then at the Cave Hill Campus. Sciences have been taught at the Cave Hill Campus of the University of the West Indies from its inception. The Faculty was formerly known as the Faculty of Natural Sciences and later the Faculty of Pure and Applied Sciences before deciding that the name Faculty of Science and Technology best represented the degrees being offered. Our full-time Academic Staff are mainly Caribbean nationals but we are also very much an international Faculty with about one third of our lecturers drawn from countries far and wide. Our degree programmes are well-respected regionally and internationally with many of our graduates working or pursuing further studies overseas.

The Faculty comprises of three sections:

- Department of Biological & Chemical Sciences – undergraduate & graduate programmes
- Department of Computer Science, Mathematics & Physics – undergraduate & graduate programmes
- Centre for Resource Management and Environmental Studies (CERMES) – graduate programmes

In the undergraduate BSc programme, courses are offered in all major scientific disciplines, with first year courses also taught at Tertiary Level Colleges in Antigua and St. Lucia. Students may major in one or two disciplines and current enrollment in the Faculty is approximately one thousand undergraduates, most of whom are full-time students. Science graduates may register for the research degrees of M.Phil. and Ph.D. under the supervision of a member of the Academic Staff. The Faculty also offers MSc. programmes in various fields. CERMES offers a MSc. in Natural Resource and Environmental Management, as well as a MSc. in Renewable Energy Management.

The Department of Computer Science and Mathematics offers a series of taught Masters programmes from the discipline of Computer Sciences. The Department of Biological and Chemical Sciences offers a taught Masters and Diploma in Biosafety.

The research interests in the Faculty are diverse, addressing both fundamental questions in Science as well as finding scientific solutions to real life problems facing Caribbean people. Faculty members also constitute an unmatched source of expertise to Governments, Non-Governmental Organisations and the Private Sector in providing technical advice. The Sports Agronomy Research Unit (SARU), within the Department of Biological & Chemical Sciences, conducts basic and contract research and provides consultancy services in the area of living grass surfaces for sporting and recreational activities. It complements the UWI Centre for Cricket Excellence. Through collaboration with the Caribbean Institute for Meteorology and Hydrology, the Faculty offers a Major in Meteorology within the BSc degree.
STAFF OF THE FACULTY OF SCIENCE & TECHNOLOGY

FACULTY OFFICE & OFFICERS

Tel: (246) 417-4310 - 12
Fax: (246) 417-4579
Website: http://www.cavehill.uwi.edu/fst
Email: fst@cavehill.uwi.edu

1. Dean
 Colin Depradine
 B. Eng. (University College London),
 MSc. (Imperial College London), Ph.D. (UWI)

2. Deputy Dean
 Adrian Als
 BSc, MPhil (UWI)
 Ph.D. (Sheffield Hallam)

3. Deputy Dean
 Leah Garner-O’Neale
 Outreach & Research
 BSc, PhD (UWI)

Project Officer
 Natasha Corbin
 BSc, MSc (UWI), PMP
 417-4739

Administrative Assistant
 Kay Browne
 BSc, MSc (UWI)
 417-4311

Administrative Assistant (Projects & Planning)
 Lisa-Ann Rollins
 BSc, MSc (UWI)
 417-4913

Secretary
 Shana Odle
 (LCCI)
 417-4310
Stenographer/Clerk

Office Assistant Anthony Howell
417-4916

IT Technician Shamar Kellman
BSc (UWI)
417-4914

Senior Mechanical Workshop Technicians Glendon Pile
417-4914

Granley Forde
417-4914

Senior Environmental Science Technician Damian Greaves
BSc (UWI)
417-4914

Senior Electronics Workshop Technician Andrew Phillips
BSc (UWI)
417-4314

Senior Electronics Workshop Technician Brian Haynes
BSc (UWI)
417-4314

CENTRE FOR RESOURCE MANAGEMENT AND ENVIRONMENTAL STUDIES (CERMES)

Tel: (246) 417-4339/4316
Fax: (246) 424-4204
Website: http://cavehill.uwi.edu/cermes
E-Mail: nrm@cavehill.uwi.edu

Director: Patrick McConney
BSc. (Bangor), M. ES. (Dalhousie),
PhD (UBC)
417-4725
<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Assistant:</td>
<td>Jennifer Hurley</td>
<td>417-4339/4316</td>
</tr>
<tr>
<td></td>
<td>(LCCI), APS, BA (Hons),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhD (UWI)</td>
<td></td>
</tr>
<tr>
<td>Professor of Marine Ecology and</td>
<td>Hazel Oxenford</td>
<td>417-4571</td>
</tr>
<tr>
<td>Fisheries</td>
<td>BSc (Exeter), PhD (UWI)</td>
<td></td>
</tr>
<tr>
<td>Emeritus Professor</td>
<td>Robin Mahon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSc (UWI), MSc., PhD (Guelph)</td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td>Janice Cumberbatch</td>
<td>417-4569</td>
</tr>
<tr>
<td></td>
<td>BSc (UWI), MSc (York),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhD (UWI)</td>
<td></td>
</tr>
<tr>
<td>Senior Lecturer</td>
<td>David Yawson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSc (Cape Coast)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSc (Wageningen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhD (Dundee)</td>
<td></td>
</tr>
<tr>
<td>Coordinator – Graduate Programmes</td>
<td>Neetha Selliah</td>
<td>417-4568</td>
</tr>
<tr>
<td></td>
<td>BSc (Surrey), MSc (UWI)</td>
<td></td>
</tr>
<tr>
<td>Project Assistant</td>
<td>Maria Pena</td>
<td>417-4727</td>
</tr>
<tr>
<td></td>
<td>BSc, MSc (UWI)</td>
<td></td>
</tr>
<tr>
<td>Senior Marine Technician</td>
<td>Renata Goodridge</td>
<td>417-4726</td>
</tr>
<tr>
<td></td>
<td>BSc (Calgary), MSc (UWI)</td>
<td></td>
</tr>
<tr>
<td>Senior IT Technician</td>
<td>Dale Benskin</td>
<td>417-4313</td>
</tr>
<tr>
<td></td>
<td>BSc (UWI)</td>
<td></td>
</tr>
</tbody>
</table>
DEPARTMENT OF BIOLOGICAL AND CHEMICAL SCIENCES

Tel: (246) 417-4323
Fax: (246) 417-4325
E- Mail: bcs@cavehill.uwi.edu

Senior Lecturer in Inorganic Chemistry & Head of Department
Avril R. Williams
BSc, PhD (UWI)

Administrative Assistant
Shirley Jones
417-4323

Stenographer/Clerk
Eldawna Bynoe
417-4574

Stenographer/Clerk
Toni Russell
417-4324

BIOLOGICAL SCIENCES

Professor of Plant Biology
C. M. Sean Carrington
BSc (Edin.), DPhil (York-UK)
417-4330

Professor of Conservation
Julia A. Horrocks
Ecology
BSc. (Reading), PhD (UWI)
417-4320

Senior Lecturer
Angela Alleyne
BSc, MPhil, PhD (UWI)
417-4808

Lecturer
Shane Austin
BSc (UWI), MSc (McGill), PhD (MUW)
417-4360

Lecturer
Darren Browne
BSc, PhD (UWI)
417-4328
Lecturer
Bidyut Mohapatra
BSc (OUAT), MSc (Calcutta)
PhD (Kochi)
417-4859

Lecturer
Marilaine Mota-Meira
Ing. (Curitiba) MSc, PhD (Laval)
417-4354

Lecturer
Thea Scantlebury-Manning
BSc, PhD (Concordia)
417-4356

Lecturer
Henri Valles
BSc (Oviedo), MSc (UWI-CERMES)
PhD (McGill).
417-4361

Lecturer
Yvonne Vallès
BSc (Oviedo), MSc (San Francisco State)
PhD (UC Berkeley).
417 4331

Lecturer
Suzanne Workman
BSc (Manch.) MPhil, PhD (UWI)
417-4663

Senior Research Fellow in Sports Agronomy
Francis Lopez
BSc, PhD (UWI)
417-4345

CHEMICAL SCIENCES

Professor of Theoretical And Computational Chemistry
Sean McDowell
BSc (UWI), PhD (Cantab)
417-4352
Professor of Organic Chemistry
Winston Tinto
BSc, PhD (UWI), CSci, CChem, FRSC
417-4357/4329

Senior Lecturer
Sergei M. Kulikov
MS (Novosibirsk State U.), PhD,
BSc (Russ. Acad. Sci.)
417-4351

Senior Lecturer
Srinivasa Popuri
BSc (Nagarjuna), MSc (DAVV),
PhD (SVU)
417-4340

Senior Lecturer
Avril Williams
BSc, PhD (UWI)
417-4342

Senior Lecturer
Jeanese Badenock
BSc (UWI),
PhD (Dartmouth)
417-4336

Lecturer
Leah Garner-O’Neale
BSc, PhD (UWI)
417-4343

Lecturer
Emma Smith
BSc (Liverpool), MSc (Heriot-Watt),
PhD (Plymouth)
417-4838
ENVIRONMENTAL SCIENCE

Senior Lecturer Isabelle Gouirand
Lic, PhD (Aix-Marseille I)
417-4837

DEPARTMENT OF COMPUTER SCIENCE, MATHEMATICS & PHYSICS

Tel: (246) 417-4365
Fax: (246) 438-9198
E-Mail: cmp@cayehill.uwi.edu

Senior Lecturer in Physics & Head of Department Sodha, Janak
BSc, MSc, PhD (Manch.)

Administrative Assistant Wavney Weekes
BSc (UWI)
417-4365

Stenographer/Clerk Geniveve Harris
417-4364

Stenographer/Clerk Angella Blades
BSc (UWI)
417-4943

COMPUTER SCIENCE

Lecturer Adrian Als
BSc, MPhil (UWI), PhD
(Sheffield Hallam)
417-4793

Lecturer John Charlery
BSc (UWI), Dip. Trop. Met. (Miami)
Adv. Dip. (Comp. Sci), MPhil,
PhD (UWI)
417-4363

17
Senior Lecturer Dwaine Clarke
SB, MEng, PhD (MIT)
417-4333

Senior Lecturer Colin Depradine
BEng. (UCL), MSc (ICL), PhD (UWI)
417-4375

Lecturer Thomas Edward
BSc, PhD (UWI)
417-4792

Lecturer Jeffery Elcock
BSc (UWI), MSc. (Oxon.)
Ph.D. (UWI)
417-4380

Lecturer Curtis Gittens
BSc (UWI), MSc, PhD (W.Ont.)
417-4473

Senior Lecturer Mechelle Gittens
BSc (UWI), MSc, PhD (W. Ont.)
417-4465

Lecturer Hussein Thompson
BSc, PhD (UWI)
417-4558

Lecturer Paul Walcott
BSc, MPhil (UWI), PhD (City)
417-4372

MATHEMATICS

Professor of Mathematical Statistics Smail Mahdi
BSc, MSc (Constantine),
PhD (Montreal)
417-4367
Senior Lecturer

Peter Chami
BSc, PhD (UWI)
417-4369

Lecturer

Jonad Pulaj
BSc (UNC), PhD (TU Berlin)
417-4383

Lecturer

Bernd Sing
Dipl.-PHYS (Tübingen), PhD (Bielefeld)
417-4737

PHYSICS & ELECTRONICS

Professor of Theoretical Physics

Tane Ray
BSc, (Illinois), PhD (Boston)
417-4377

Professor of Condensed Matter Physics

Upindranath Singh
BSc, MPhil. (UWI)
MSc, PhD (Delaware)

Emeritus Professor of Physics

L. Leo Moseley
BSc, MSc (UWI), PhD (Wales)
417-4373

Senior Lecturer

Carlos Hunte
BSc, MPhil., PhD (UWI)
417-4382

Senior Lecturer

Janak Sodha
BSc, MSc, PhD (Manch.)
417-4573

Lecturer

Sujit Bag
B.Tech. (IIT Kharagpur), PhD (Leic.)
417-4851

Lecturer

Legena Henry
BSc (Howard), SM (MIT), PhD (UWI)
417-4158
Lecturer Ramon Sargeant
BSc, MPhil (UWI),
MSc, PhD (King's Col)
417-4374

THE CARIBBEAN INSTITUTE FOR METEOROLOGY & HYDROLOGY (CIMH)
Is an Affiliate Institution whose Faculty members teach our degree programme in Meteorology

Tel: (246) 425-1362
Fax: (246) 424-4733
Website: http://www.cimb.edu.bb

Director David Farrell
BSc (W. Ont.), MSc, PhD (Manitoba)
425-1367

Senior Lecturer Adrian Trotman
BSc (UWI), MSc (Reading),
MPhil. (UWI)
425-1362

Lecturer Shawn Boyce
BSc (UWI), MSc (Newcastle)
425-1362

Lecturer Kathy-Ann Caesar
BSc (SUNY) MSc (Texas A & M)
425-1362

Lecturer Jonathan Cox
BSc (Cardiff), PhD (Salford-Manchester)
425-1362

Lecturer Margerette Mayers-Als
BSc, MPhil (UWI)
425-1362

Lecturer Lawrence Pologne
BSc (UWI), MSc (Florida State), PhD (UWI)
425-1362
Lecturer Andrea Sealy
BSc (Jackson State),
MSc (Penn. State), PhD (Howard)
425-1362

Lecturer Cédric Van Meerbeeck
MSc (Ghent), PhD (Amsterdam)
425-1362

Lecturer Ashford Reyes
BSc (UWI), PhD (Howard)
425-1362
PRINCIPAL OFFICERS OF THE UNIVERSITY OF THE WEST INDIES

Visitor
Her Majesty the Queen

Chancellor
Mr. Robert Bermudez

Vice-Chancellor
Professor Sir Hilary Beckles
BA, PhD Hull, Hon DLitt, Hull, Hon DLitt Knust

CHAIRMEN, CAMPUS COUNCILS

Sir Paul Altman
GCM, BCH, JP, BBA Mia, Hon. LLD UWI

Dr. Marshal Hall
CD, BSc Col, Ph.D. Wis

Mr. Ewart Williams
BSc, MSc UWI

Sir K. Dwight Venner
KBE, CBE, BSc, MSc, UWI

PRO-VICE CHANCELLORS

Professor Alan Cobley
BA Manc, MA York, UK, PhD Lond

Professor Dale Webber
BSc UWI, PhD UWI

Professor Andrew Downes
BSc (Hons), MSc UWI, PhD Manc

Professor V. Eudine Barriteau – Cave Hill
BSc UWI, MPA NYC, PhD Howard

Professor Archibald McDonald
MBBS, DM (Surg) UWI, FRCSEd, FACS

Professor Clement Sankat
BSc, MSc, UWI, PhD Guelph, MASAE, MAPETT, FIAgreE

Dr. Luz Longsworth
BA UWI, MBA UWI, MA Queens, DBA Bath

DEPUTY CAMPUS PRINCIPALS

Professor R Clive Landis – Cave Hill
BSc Birmingham, MSc Loyola, PhD Loyola

Professor Ishenkumba Kabwa – Mona
BSc , MSc Dar, PhD Louisiana State

Professor Rhoda Reddock – St. Augustine
BSc UWI, MSc ISS The Hague, PhD Amsterdam

Professor Julie Meeks Gardner – Open Campus
BSc, Dip Nutrition, PhD UWI

University Registrar
Mr. C. William Iton
BSc UWI, LLM Essex

University Bursar
Mr. Archibald Campbell
BSc MSc UWI, FAC

University Librarian
Mrs. Karen Lequay
BSc UWI, MSc Soton, MSc Lough

PUBLIC ORATORS

Dr. Jennifer Obidah-Alleyne – Cave Hill
BA Hunter Col, MA Yale, PhD U of California, Berkley

Dr. Michael Bucknor – Mona
BA, PhD UWI

Dr. Brian Cockburn – St. Augustine
BSc, PhD UWI

Dr. Francis Severin – Open Campus
BA, MSc, PhD UWI
STUDENT AFFAIRS

Tel: (246) 417-4119
Fax: (246) 438-9145

Admissions:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Registrar</td>
<td>Mr. Timothy Arthur</td>
<td>417-4119</td>
</tr>
<tr>
<td>Administrative Assistant</td>
<td>Mrs. Deborah Knight</td>
<td>417-4122</td>
</tr>
<tr>
<td>Administrative Assistant (Ag.)</td>
<td>Mrs. Carol Jordan BSc, MSc</td>
<td>417-4862</td>
</tr>
<tr>
<td>Science & Technology Faculty Clerk</td>
<td>Ms. Annika Weekes BSc</td>
<td>417-4471</td>
</tr>
<tr>
<td>Secretary</td>
<td>Ms. Kathy-Ann Watson</td>
<td>417-4120</td>
</tr>
<tr>
<td>Summer School Representative</td>
<td>Mrs. Nidra Grant</td>
<td>417-4114</td>
</tr>
</tbody>
</table>

Examinations:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Registrar</td>
<td>Miss Orwyn Herbert BSc, MSc</td>
<td>417-4133</td>
</tr>
<tr>
<td>Administrative Assistant</td>
<td>Mrs. Eudine Spooner</td>
<td>417-4139</td>
</tr>
<tr>
<td>Administrative Assistant</td>
<td>Ms. Ingrid Lashley</td>
<td>417-4135</td>
</tr>
<tr>
<td>Stenographer/Clerk</td>
<td>Mrs. Ann Arthur</td>
<td>417-4137</td>
</tr>
</tbody>
</table>

Records:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Assistant</td>
<td>Miss Nakita Squires, BSc</td>
<td>417-4140</td>
</tr>
<tr>
<td>Stenographer/Clerk</td>
<td>Ms. Esther Layne, BSc</td>
<td>417-4142</td>
</tr>
<tr>
<td>(Transcripts & Academic Records)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

School for Graduate Studies and Research:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Assistant Registrar</td>
<td>Mr. Owen Ellis</td>
<td>417-4902</td>
</tr>
<tr>
<td>Administrative Assistant</td>
<td>Mrs. Fay Williams, BSc</td>
<td>417-4907</td>
</tr>
<tr>
<td>Administrative Assistant</td>
<td></td>
<td>417-4910</td>
</tr>
<tr>
<td>Science & Technology Faculty Clerk</td>
<td>Miss Tara Moseley, BSc</td>
<td>417-4905</td>
</tr>
</tbody>
</table>
APPLICATION PROCEDURE

Applications for entry to all Faculties must be received on or before January 10 of the year in which the applicant wishes to enter and should be accompanied by:

- Certified evidence of all examinations passed;
- A signed statement from parent/guardian agreeing that the applicant shall become an undergraduate in the Faculty*
- A signed statement from parent/guardian or from a responsible individual or authority that funds will be available for the payment of fees*
- The relevant application fee.

Students are required to apply on-line at www.cavehill.uwi.edu/apply.

Table 1:
Minimum CAPE (or equivalent) qualifications for entry to 3-Year BSc Science Programmes

<table>
<thead>
<tr>
<th>BSc Major in</th>
<th>Required CAPE Passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>Biology & Chemistry</td>
</tr>
<tr>
<td>Biology ¹</td>
<td>Biology or Environmental Science & Chemistry</td>
</tr>
<tr>
<td>Ecology</td>
<td>Biology or Environmental Science & Chemistry</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Biology or Environmental Science & Chemistry</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>Two science subjects relevant to course of study**</td>
</tr>
<tr>
<td>Chemistry ¹</td>
<td>Chemistry & another subject</td>
</tr>
<tr>
<td>Computer Science ¹</td>
<td>Mathematics & another subject</td>
</tr>
<tr>
<td>Information Technology (IT)</td>
<td>Mathematics & another subject</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>Mathematics & another subject</td>
</tr>
<tr>
<td>Mathematics ¹</td>
<td>Pure Mathematics & another subject</td>
</tr>
<tr>
<td>Electronics</td>
<td>Mathematics & Physics**</td>
</tr>
<tr>
<td>Physics</td>
<td>Mathematics & Physics</td>
</tr>
<tr>
<td>Meteorology</td>
<td>Mathematics & Physics</td>
</tr>
<tr>
<td>BSc Options ²</td>
<td></td>
</tr>
<tr>
<td>Computer Science (or IT) & Accounting</td>
<td>Mathematics & another subject</td>
</tr>
<tr>
<td>Computer Science (or IT) & Management</td>
<td>Mathematics & another subject</td>
</tr>
<tr>
<td>Mathematics & Economics</td>
<td>Pure Mathematics & another subject</td>
</tr>
<tr>
<td>Mathematics & Accounting</td>
<td>Pure Mathematics & another subject</td>
</tr>
<tr>
<td>Science & Management</td>
<td>Mathematics & requirements as for the Science Major</td>
</tr>
<tr>
<td>Science & Psychology</td>
<td>Requirements as for the Science Major</td>
</tr>
</tbody>
</table>

¹ Double Major also offered ² Numbers taking these Options are restricted

**Two of CAPE Biology, Chemistry, Mathematics, Environmental Science; or BCC Associate Degree in Environmental
INTERNATIONAL EXCHANGE/ STUDY ABROAD PROGRAMME

The exchange programme allows students to spend one or two semesters abroad at overseas universities in order to broaden their experience, understanding and perception. Such exchanges typically take place in Year 2 of the BSc degree and the application deadline is December 1st of the year prior to the exchange. UWI students, while at exchange Universities, continue as regular full-time students of the University of the West Indies. They pay UWI tuition and other fees and pursue matching and approved courses for credit. Credits earned abroad are transferred to UWI and applied to regular Faculty degree requirements in accordance with Regulation 38. For study abroad the requirements may vary. Interested students are advised to consult the International Exchange/Study Abroad brochure available from the Admissions Section of Student Affairs. This contains a current list of Universities with which UWI has entered into cooperative arrangements for study exchanges. Programmes of study must be pre-approved by the Dean.
UNIVERSITY REGULATIONS ON PLAGIARISM
(First Degrees, Diplomas and Certificates)

APPLICATION OF THESE REGULATIONS

1 These Regulations apply to the presentation of work by a student for evaluation, whether or not for credit, but do not apply to invigilated written examinations.

DEFINITION OF PLAGIARISM

2 In these Regulations, “plagiarism” means the unacknowledged and unjustified use of the words, ideas or creations of another, including unjustified unacknowledged quotation and unjustified unattributed borrowing;
“Level 1 plagiarism” means plagiarism which does not meet the definition of Level 2 plagiarism;
“Level 2 plagiarism” means plagiarism undertaken with the intention of passing off as original work by the plagiariser work done by another person or persons.

3 What may otherwise meet the definition of plagiarism may be justified for the purposes of Regulation 2 where the particular unacknowledged use of the words, ideas and creations of another is by the standards of the relevant academic discipline a function of part or all of the object of the work for evaluation whether or not for credit, for example:
 a. The unacknowledged use is required for conformity with presentation standards;
 b. The task set or undertaken is one of translation of the work of another into a different language or format;
 c. The task set or undertaken requires producing a result by teamwork for joint credit regardless of the level of individual contribution;
 d. The task set or undertaken requires extensive adaptation of models within a time period of such brevity as to exclude extensive attribution;
 e. The task set or undertaken requires the use of an artificial language, such as is the case with computer programming, where the use of unoriginal verbal formulae is essential.

4 It is not a justification under Regulations 2 and 3 for the unacknowledged use of the words, ideas and creations of another that the user enjoys the right of use of those words, ideas and creations as a matter of intellectual property.
OTHER DEFINITIONS

5 In these Regulations,
“Chairman” means the Chairman of the relevant Campus Committee on Examinations;
“Examination Regulations” means the Examination and other forms of Assessment Regulations for First Degrees Associate Degrees Diplomas and Certificates of the University;
“set of facts” means a fact or combination of facts.

EVIDENCE OF PLAGIARISM

6 In order to constitute evidence of plagiarism under these Regulations, there shall be identified as a minimum the passage or passages in the student's work which are considered to have been plagiarised and the passage or passages from which the passages in the student's work are considered to have been taken.

STUDENT STATEMENT ON PLAGIARISM

7 When a student submits for examination work under Regulation 1, the student shall sign a statement, in such form as the Campus Registrar may prescribe, that as far as possible the work submitted is free of plagiarism including unattributed quotation or paraphrase of the work of another except where justified under Regulation 3.

8 Quotation or paraphrase is attributed for the purpose of Regulation 7 if the writer has indicated using conventions appropriate to the discipline that the work is not the writer's own.

9 The University is not prohibited from proceeding with a charge of plagiarism where there is no statement as prescribed under Regulation 7.

ELECTRONIC VETTING FOR PLAGIARISM

10 The results of any electronic vetting although capable, where the requirements of Regulation 7 are satisfied, of constituting evidence under these Regulations, are not thereby conclusive of any question as to whether or not plagiarism exists.

LEVEL 1 PLAGIARISM

11 In work submitted for examination where the Examiner is satisfied that Level 1 plagiarism has been committed, he/she shall penalise the student by reducing the mark which would have otherwise been awarded taking into account any relevant Faculty regulations.
LEVEL 2 PLAGIARISM

Where an examiner has evidence of Level 2 plagiarism in the material being examined, that examiner shall report it to the Head of Department or the Dean and may at any time provide the Registrar with a copy of that report. In cases where the examiner and the Dean are one and the same, the report shall be referred to the Head of the Department and also to the Campus Registrar.

Where any other person who in the course of duty sees material being examined which he or she believes is evidence of Level 2 plagiarism that other person may report it to the Head of Department or the Dean and may at any time report it to the Campus Registrar who shall take such action as may be appropriate.

Where a Dean or Head of Department receives a report either under Regulation 12 or 13, the Dean or Head of Department, as the case may be, shall

a. where in concurrence with the report’s identification of evidence of Level 2 plagiarism, report the matter to the Campus Registrar; or

b. where not concurring in the identification of evidence of plagiarism, reply to the examiner declining to proceed further on the report; or

c. where concluding that there is evidence of Level 1 plagiarism, reply to the examiner indicating that conclusion and the Examiner shall proceed as under Regulation 11.

Where a report is made to the Campus Registrar under Regulation 14a or 16, the Campus Registrar shall lay a charge and refer the matter to the Campus Committee on Examinations.

Where the Campus Registrar receives a report alleging Level 2 plagiarism from the Examiner or any other person except the Dean or Head of Department, the Campus Registrar shall refer the matter to a senior academic to determine whether there is sufficient evidence to ground a charge of plagiarism and where such evidence is found, the Campus Registrar shall proceed as under Regulation 15.

Where the matter has been referred to the Campus Committee on Examinations pursuant to Regulation 15, the proceedings under these Regulations prevail, over any other disciplinary proceedings within the University initiated against the student based on the same facts and, without prejudice to Regulation 21, any other such disciplinary proceedings shall be stayed, subject to being reopened.

If the Campus Committee on Examinations is satisfied, after holding a hearing, that the student has committed Level 2 plagiarism, it shall in making a determination on the severity of the penalty take into consideration:

a. the circumstances of the particular case;

b. the seniority of the student; and

c. whether this is the first or a repeated incidence of Level 2 plagiarism.
Where the Campus Committee is of the view that the appropriate penalty for an offence of Level 2 plagiarism is for the student to be:

a. awarded a fail mark;

b. excluded from some or all further examinations of the University for such period as it may determine;

c. be dismissed from the University, it shall make such recommendation to the Academic Board.

CLEARANCE ON A CHARGE OF LEVEL 2 PLAGIARISM

A determination of the Campus Committee on Examinations that Level 2 plagiarism has not been found will be reported to the Campus Registrar who shall refer it to the Examiner and notify the student. Where the Committee has not identified Level 2 but has identified Level 1, it shall be reported to the Campus Registrar who shall refer it to the examiner.

LEVEL 2 PLAGIARISM: APPEAL TO THE SENATE

A student may appeal to the Senate from any decision against him or her on a charge of plagiarism made by Academic Board.

DELEGATION BY DEAN OR HEAD OF DEPARTMENT

The Dean or Head of Department, as the case may be, may generally or in a particular instance delegate that officer's functions under these Regulations.

CONFLICT OF INTEREST DISQUALIFICATION

Any person who has at any time been an examiner of work or been involved in procedures for laying charges in relation to which an issue of plagiarism is being considered under these Regulations shall withdraw from performing any functions under these Regulations other than those of supervisor and examiner.
PRIZES AWARDED ANNUALLY IN THE FACULTY OF SCIENCE AND TECHNOLOGY

THE GRAHAM GOODING BIOLOGY PRIZE
The prize consists of a commemorative scroll and voucher for BDS $600.00 to be spent on books related to the Biological Sciences. It will be awarded to the best student majoring in the Biological Sciences (Biochemistry, Biology, Ecology, Microbiology) based on the student’s performance (minimum B+ average) in the courses comprising the Biological major.

R. L. SEALE & CO. LTD. PRIZE IN CHEMISTRY
This prize consists of a book voucher of BDS $600.00 and a commemorative scroll. It is awarded to the best student (who meets the standard) on the basis of performance in Chemistry courses during the final two years of the programme.

SYSTEMS CONSULTING LTD. (SCL) PRIZES
in (a) Computer Science
 (b) Computer Science and Accounting or Computer Science and Management

These prizes consist of a cash voucher of BDS $1500 to be spent on computer-related materials. Students must have completed Year 1 of the Science and Technology Programme; and have fulfilled the Year 1 requirements for the major in Computer Science or Computer Science and Accounting or Computer Science and Management and have attained the highest average grade which must be at least B+

None of these courses should have been repeated.

SCL will offer each Prize winner a three-month paid work attachment at SCL after graduation.

SYSTEMS CONSULTING LTD. (SCL) PRIZE IN MATHEMATICS
The prize consists of a voucher of BDS $500 to be spent on books on Mathematics and related fields. Students must be graduating in the current year, have majored in Mathematics and have attained the highest average marks in the Mathematics courses relevant to the major with an overall average grade of at least B+.

None of the courses should have been repeated.
FACULTY PRIZE

This prize consists of a voucher of BDS $500 to be spent on books. It is awarded to the Part I/Level I student with the best academic performance.

DEAN’S PRIZES, FACULTY OF SCIENCE AND TECHNOLOGY

There shall be two (2) Prizes awarded annually, called the Dean’s Prizes, Faculty of Science and Technology. The Prizes shall be awarded to two (2) students registered in the Faculty of Science and Technology who:

- have obtained at least an A average grade over 64 credits in the Faculty of Science and Technology courses at Levels II/III
- should be nominated by their Department and interviewed by an Interdisciplinary panel. The names shall be inscribed on an appropriate plaque to be displayed in the Faculty Office.

The value of the Prizes shall be:

- **FIRST PRIZE (Bds)** $900.00
- **SECOND PRIZE (Bds)** $500.00

THE PFIZER CARIBBEAN SCIENCE PRIZE

Valued at BDS $1000, it is open to undergraduate students registered for a major in Biology, Chemistry or their sub-disciplines in the Department of Biological and Chemical Sciences.

LOUIS CHINNERY ECOLOGY PRIZE

A commemorative scroll and a voucher for BDS $900.00 to be used in the purchase of books related to the Biological/Ecological/Environmental Sciences. Awarded to the best student majoring in Ecology with a minimum B+.
DEAN’S LIST REGULATIONS

Eligibility for inclusion on the Dean’s List

The following guidelines are applicable:

(a) Inclusion on the Dean’s List will be on a Yearly basis. The Summer School Programme will not be considered.

(b) Students must obtain a Semester GPA of 3.60 and above in both semesters.

(c) Full-time students must have passed a minimum of 12 Faculty credits in the semester. Part-time students must have passed a minimum of 6 credits of Faculty courses in the semester.

Credits gained for the following will NOT be taken into consideration in computing the Dean’s List:

- Foundation courses
- Co-curricular offerings
- Audited courses
- Summer courses
- Not-for-credit courses

(d) Repeat courses will be included in the computation of the Semester GPA towards the Dean’s List.

(e) Special consideration will be given to students who are differently-abled and who have obtained a semester GPA of 3.60 and above but who have registered for less than 12 Faculty credits. Such students must declare and provide supporting documents, to the relevant University authority, as evidence of their disability at the start of the semester. Decisions for inclusion of such differently-abled students in the Dean’s List will be taken at the Faculty’s Board of Examiners Meeting.
<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-requisites</td>
<td>Two courses of which credit may be granted for only one. Bodies on the basis of criteria such as method of enquiry, axioms, areas of application.</td>
</tr>
<tr>
<td>Course</td>
<td>A body of knowledge circumscribed by a syllabus to be imparted to students by sundry teaching methods and usually followed by an examination.</td>
</tr>
<tr>
<td>Credit</td>
<td>A measure of the workload required of students. 1 Credit Hour = 1 hour lecture/tutorial/problem class per week OR 2 hours laboratory session per week, for a Semester.</td>
</tr>
<tr>
<td>Cumulative GPA</td>
<td>Grade point average obtained by dividing the total grade point earned by the total quality hours for which the student has registered for any period of time excluding courses taken on a Pass/Fail basis, audited courses, courses taken for Preliminary credit, incomplete and in-progress courses.</td>
</tr>
<tr>
<td>Discipline</td>
<td>A body of knowledge encapsulated in a set of courses distinguishable from other such bodies on the basis of criteria such as method of enquiry, axioms, areas of application.</td>
</tr>
<tr>
<td>Elective</td>
<td>A course within a programme taken by choice of the student.</td>
</tr>
<tr>
<td>Faculty Courses</td>
<td>All courses except Foundation and Co-curricular courses.</td>
</tr>
<tr>
<td>Foundation Courses</td>
<td>Broad-based courses, three of which must be taken, and which provide a general foundation of knowledge.</td>
</tr>
<tr>
<td>Honours GPA</td>
<td>Weighted grade point average used to determine the class of degree. This GPA is computed on the basis of all courses done in the Advanced Part (Levels 2 & 3) of the degree programme, weighted with respect to credits and to earned quality hours.</td>
</tr>
<tr>
<td>In-Faculty Courses</td>
<td>All Faculty courses originating in the Science Faculties.</td>
</tr>
<tr>
<td>Level</td>
<td>A measure of the standard of a course, designated at UWI by the first digit in the course number.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Major</td>
<td>30 credits (minimum) from prescribed courses at Levels 2 & 3 (as defined).</td>
</tr>
<tr>
<td>Marginal Failure</td>
<td>A score for the overall examination of a course which is not more than 5 marks below the minimum pass mark for that course.</td>
</tr>
<tr>
<td>Minor</td>
<td>15 credits (minimum) of prescribed courses at Levels 2 & 3 (as defined).</td>
</tr>
<tr>
<td>Option</td>
<td>A prescribed programme, comprising in-Faculty and, in some cases, out-of-Faculty courses, leading to a specific degree.</td>
</tr>
<tr>
<td>Out-of-Faculty Courses</td>
<td>All Faculty courses originating in Faculties other than the Science Faculties.</td>
</tr>
<tr>
<td>Preliminary Course</td>
<td>A Level 0 course used to satisfy entry requirements but does not contribute towards the requirements for the award of the degree.</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td>A course which must be passed before another course for which it is required may be pursued.</td>
</tr>
<tr>
<td>Programme</td>
<td>A selection of courses (designed to achieve pedagogical goals) the taking of which is governed by certain regulations and the satisfactory completion of which (determined by such regulations) makes a candidate eligible for the award of a degree/diploma/certificate.</td>
</tr>
<tr>
<td>Science Faculties</td>
<td>The Faculties of Science and Technology at Cave Hill, Mona and St. Augustine.</td>
</tr>
<tr>
<td>Semester GPA</td>
<td>Grade point average (GPA) computed on the basis of all courses done in a semester, without reference to weighting except in terms of credits. (The terms Grade Point, GPA, Quality Hours and Quality Points are defined in The UWI Grade Point Average Regulations Booklet).</td>
</tr>
<tr>
<td>Subject</td>
<td>An area of study traditionally assigned to the purview of a department.</td>
</tr>
<tr>
<td>Supplemental Examination</td>
<td>A re-sit of an examination of a course which is not more than 5 marks below the minimum pass mark for that course.</td>
</tr>
<tr>
<td>Supplementary Oral</td>
<td>An oral examination, offered on recommendation of Department and Faculty, to candidates who have registered a marginal failure in a Level 2 or 3 course.</td>
</tr>
</tbody>
</table>
FACULTY REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE

All students of the University are subject to the University Regulations for Students approved by the Senate of the UWI.

Where there is conflict between the regulations of any Faculty and the University Regulations, the University Regulations shall apply.

A. QUALIFICATION FOR ADMISSION

1. In order to be admitted to the three-year degree programme, candidates must satisfy the University requirements for Matriculation (see The UWI University Regulations for Students) and have passed Mathematics and two approved science subjects [Appendix I(b)] at CSEC General Proficiency level at Grades I, II or, since 1998, Grade III (or equivalent qualification)
 and
 (a) Have obtained passes in four Units at CAPE, at least two Units in one subject, all at Grade V or better (or equivalent qualification). One of the CAPE subjects must be an Approved Science subject [see Appendix I(a)].
 or
 (b) Have an approved Associate Degree with a GPA of 2.5 (or equivalent qualification) or higher, from a Tertiary Level Institution.
 (N.B. Candidates must also satisfy Departmental Requirements).

2. In order to be admitted to the four-year degree programme, candidates must satisfy the University requirements for Matriculation (see The UWI University Regulations for Students) and have passed Elementary Mathematics at CSEC General Proficiency level at Grades I, II or, since 1998, Grade III (or equivalent qualification) plus at least two of the disciplines listed in Appendix I(b).

B. OUTLINE OF THE DEGREE PROGRAMME

3. The degree of B.Sc. is awarded on the basis of a programme of studies comprising combinations of courses in Science disciplines, together with certain Foundation courses. Approved Out-of-Faculty (see Glossary) courses may be included.

4. The Science Faculties offer the following Bachelors degrees in Science (the terms Major, Minor, Option etc., are defined in the Glossary):
(a) A degree with a single Major (30 credits minimum from Levels 2 and 3) or a double Major in one or two Science disciplines (2 x 30 credits minimum or 1 x 60 credits minimum, from Levels 2 and 3). (See Appendix II for a list of Science Majors offered).

(b) A degree with a single Major in a Science discipline plus

(i) one or two Minors from other distinct Science disciplines (each with 15 credits minimum from Levels 2 and 3)

(ii) a Major, or one or two Minors, from other Faculties. Out-of-Faculty Majors and Minors are governed by the regulations of the Faculty of origin. Only certain such combinations are allowed and these are considered Option. (See Appendix VI).

5. The following types of courses, which may consist of both theoretical and practical parts, are offered by the University:

(a) Courses taught by the Science Faculties (in-Faculty courses) include Preliminary (Level 0) and Levels 1, 2 and 3 courses. (Preliminary courses may be used to satisfy entry requirements of Regulation 1 above, but do not contribute towards the requirements for the award of a degree.)

(b) Service courses, which provide students with basic techniques and skills needed for dealing with the academic programme.

(c) Approved Out-of-Faculty courses which may contribute toward the requirements for the award of a degree.

(d) Foundation courses (see Appendix III) which are given throughout the University to augment the general education of students.

(e) Co-curricular activities approved for credit by Academic Board. A maximum of three credits of co-curricular activities may be included as part of the credits required for the award of a degree, but shall not be taken into account in the determination of the Cumulative GPA or the class of degree. They may not be substituted for Foundation Courses. Co-curricular credits gained in excess of three will be entered on the student’s transcript but will not contribute toward the requirements for the degree.

6. Courses normally extend over not more than one semester, but in special cases may extend over two semesters. The contact hours for a course are expressed in terms of Credit Hours (credits) and the credit-rating of a course is determined by the Faculty which administers the course. (See Appendix IV).

7. In order to be eligible for award of the degree, candidates must:

(a) have been in satisfactory attendance for a period equivalent to at least six semesters of full-time study from entry into Level 1;

and
(b) have passed courses totalling a **minimum** of **93** credits from Level 1, 2 and 3 Faculty and Foundation courses for the degree as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>24</td>
</tr>
<tr>
<td>Level 2 and Level 3</td>
<td>60</td>
</tr>
<tr>
<td>Foundation courses</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
</tr>
</tbody>
</table>

(i) A minimum of **12** credits at Level 1 and **30** credits at Levels 2 and 3 must be taken from in-Faculty courses.

(ii) Specific Options, or Cross-Faculty programmes, may require more than **93** credits (see Appendix VI)

(c) have a Degree GPA of at least **2.00**.

C. **REGISTRATION**

8. A student pursuing a degree in the Faculty may register full-time or part-time. A student who is in full-time employment may pursue a degree on a part-time basis only.

9. Students must register for courses at the beginning of the academic year. Time limits governing changes in registration are as outlined in the student handbooks for each Campus. A student is deemed to be registered for a course only after his/her financial obligations to the University have been fulfilled.

10. Registration for any course (except audited courses) automatically implies entry for the associated examinations. A student who fails to attend the examinations without having previously withdrawn from the course (see Reg.9), or without having tendered evidence of illness at the time of the examinations, certified by a medical practitioner recognized by the University, will be deemed to have failed the course. **Medical certificates must reach the Campus Registrar no later than seven days after the date of the examination concerned.**

11. (a) A student who has passed a course will not be permitted to re-register for that course.
(b) Likewise, students may not register for Preliminary courses in a subject which overlaps substantially with any CAPE/GCE A-Level courses (or equivalent) previously passed.

D. **PROGRESS THROUGH THE PROGRAMME**

12. Students admitted into the four-year degree programme (Reg.2) who have already obtained **one** CAPE/GCE A-level pass (or equivalent) in an approved science subject, may be permitted to register for up to **9** credits of Level 1 courses.
13. (a) Full-time Part I students are required to register for a minimum of 12 credits from Faculty courses and Foundation course, per semester. A student registering for less than twelve credits will be deemed to be a part-time student.

(b) In order to register for Level 2 courses, a student must normally pass a minimum of 18 credits in Level 1 Faculty courses. At least 12 of these credits must be from in-Faculty courses.

(c) A student must not register for less than two courses in any one semester, except with the permission of the Dean.

(d) The normal load for a full-time student is 15 course credits per semester, plus one Foundation course i.e.: 33 credits over Semester I & II.

14. The maximum number of credits for which a student may register in any one semester is 18 credits, if full-time, and 11 credits, if part-time.

15. (a) Students must make a final declaration of their proposed major(s) and/or minor(s) by the end of the registration period of the semester in which they intend to graduate.

(b) Students must graduate as soon as they have met the requirements for the degree for which they are registered.

E. EXAMINATIONS

16. In order to pass a course, a student must have been in satisfactory attendance at the course and must have satisfied the examiners in the associated examinations.

17. The examination associated with each course shall be conducted mainly by means of written and/or practical papers, normally taken at the end of the semester in which the candidate has registered for the courses concerned. However, oral examinations as well as performance in course work in the form of essays, in-course tests, research papers, projects, or continuous assessment of theoretical and/or practical work may contribute towards the final grade awarded in a course.

18. (a) When practical papers and/or practical coursework contribute towards an examination, candidates must satisfy the examiners in both the theoretical and practical aspects of the course. On the basis of performance in the practical component of the course, a candidate may, on the recommendation of the Department concerned, be exempted from the practical part of the examination.

(b) To obtain a pass in Computer Science and Mathematics courses, candidates must pass both coursework and final examination.

19. A candidate who marginally fails the examination associated with a Preliminary or Level 1 course may, if recommended by the relevant Department, be granted permission by the Board of Examiners to sit a Supplemental Examination. Such permission will be given on the basis of the performance of the candidate in the courses concerned.
20. A **finalist** who marginally fails a course needed for graduation, having satisfied the Departmental requirements, may, at the discretion of the Faculty Board of Examiners, be offered a Supplementary Oral. Any candidate who satisfies the examiners in a Supplementary Oral will be given the minimum passing grade in the course. No more than two Supplementary Orals may be gained. However, a third oral examination may be granted to final year students in circumstances when passing a single course is all that is required. A **Supplemental Oral precludes the student requesting a Remark.**

21. A candidate who fails the examination associated with a course may be given permission to repeat the course and the examination on a subsequent occasion.

In the event that such a candidate has satisfied the examiners in the coursework, the candidate may, on the recommendation of the relevant Department, be exempted from the coursework passed. If such a recommendation has been made, the candidate may apply to the Dean for permission to take the examination without attending the course (Exam Only).

22. The Academic Board of a candidate’s Campus on the recommendation of the Faculty Board concerned, may debar the candidate from writing the examination associated with a course if the candidate has not attended and/or performed satisfactorily in the course. **The grade for such a candidate will be recorded as Absent Fail.**

F. **GPA AND CLASS OF DEGREE**

23. (a) A **Semester grade point average** which includes *all* approved courses for which the student is registered in a semester, whether passed or failed, will be calculated for the determination of academic standing.

(b) A **Cumulative grade point average** which includes all courses completed excluding those taken on a Pass/Fail basis, audited courses, Preliminary courses and courses designated I or IP will be calculated and recorded on the student’s transcript.

(c) A **Degree grade point average** including all Level 2 and 3 courses, whether passed or failed, will be calculated for determination of the class of the degree. (See Appendix V for the relationship between marks, grade point average and class of degree).

24. All courses included in the computation of the grade point averages in Regulation 23, are weighted according to their credit rating.
G. LEAVE OF ABSENCE AND VOLUNTARY WITHDRAWAL

25. (a) A student who wishes to be absent from the Faculty for a semester or more may apply for Leave of Absence, through the Dean, to the campus Academic Board, stating the reasons for the application.

(b) Leave of Absence will not be granted for more than two consecutive semesters in the first instance. However, students may apply for an extension of leave.

(c) Leave of Absence will not be granted for more than four consecutive semesters.

(d) Applications for Leave of Absence or extension thereof should normally be submitted by the end of the registration period in the relevant semester.

26. A student who registers for no courses in two successive semesters without having obtained Leave of Absence will be deemed to have withdrawn from the Faculty.

27. A student who voluntarily withdraws from the university and who applies for re-admission within five years shall be granted exemption and credit for all courses previously passed unless the Department concerned declares that the material covered in a course has become outdated. All grades previously obtained except those for courses declared outdated shall be used in the determination of the GPA of such a student.

H. TIME LIMITS FOR COMPLETION & ENFORCED WITHDRAWAL

28. For the purposes of Regulations 29 & 30 below, any semester in which a student is registered part-time or any registration for the maximum number of credits for Summer school will be counted as half of a semester of full-time study. After the total of equivalent full-time study has been obtained in this way, it will be rounded down to a whole number.

29. (a) A student whose Semester Grade Point Average is less than 2.00, will be deemed to be performing unsatisfactorily and will be placed on Warning.

(b) A student on Warning, whose Semester grade point average is less than 2.00, will be Required To Withdraw from the Faculty.

30. (a) Students admitted to the programme under Reg.1 shall complete the requirements for the degree in a minimum of six or a maximum of ten semesters of full-time study.

(b) Students admitted to the programme under Reg.2 shall complete the requirements for the degree in a minimum of eight or a maximum of twelve semesters of full-time study.

(c) Students who cannot complete the programme within the maximum periods given in (a) and (b) above will normally be Required To Withdraw from the Faculty at the end of the academic year in which the maximum is reached.
31. In the event that a student has exhausted the maximum periods mentioned in Reg.30 above, but still requires for the completion of the degree programme,

 Either:
 (a) passes in courses totalling no more than six credits,
 or:
 (b) passes in Foundation courses only,

 the Faculty Board may at its discretion recommend to Academic Board an extension of the period of study by one or two semesters.

32. For the purposes of Regulations 28 to 31 above, any semester for which a student has obtained Leave of Absence from the Faculty shall not be counted (see Reg.25).

33. Notwithstanding Regulations 28 to 32 above, Academic Board may, on the recommendation of the Faculty Board, require the student to Withdraw from the Faculty at the end of any semester on grounds of persistent neglect of work and/or repeated failure in examinations.

34. A student Required To Withdraw from one Faculty:
 (a) may register immediately in another, if in the opinion of the student and the Dean of the receiving Faculty this is desirable and the student satisfies that Faculty's entry requirements;
 (b) will be required automatically to withdraw from the University if not granted registration in another Faculty; and
 (c) may not register in the ensuing Academic Year, for any courses in the Faculty from which (s)he had been Required To Withdraw.
 (d) if readmitted and Required To Withdraw for a second time, will not be considered for readmission until a minimum period of five years has elapsed.

35. A student who was Required To Withdraw for reasons of failure to progress may be readmitted to the Faculty on the following conditions:
 (a) A minimum of one year has passed since the date of withdrawal
 (b) The Faculty is satisfied that the circumstances attending the reasons for the withdrawal have altered substantially.
 (c) All grades previously obtained, except for courses to be repeated (having been deemed outdated), shall continue to apply for the purpose of determining the student's GPA.
 (d) Subject to The UWI Grade Point Average Regulation 11, courses pursued at an institution other than the UWI during the period of withdrawal may be eligible for credit.
 (e) Courses pursued in The UWI Summer School during the period of withdrawal shall be included in all relevant grade point average calculations if the student re-enters the UWI.
I. EXEMPTIONS AND TRANSFERS

36. Holders of degrees from approved universities, or candidates who have partially fulfilled the requirements of such degrees, may apply to the Board for Undergraduate Studies, through the Faculty Board of the candidate's campus, for exemption from Level 1 courses. Each such application will be considered on its own merit.

37. Students on transfer between different BSc degree programmes or from other programmes of study within the University may, on the basis of passes already obtained, and on the recommendation of the Departments concerned, be exempted from some or all of the Level 1 courses, and some of the Level 2 and/or Level 3 courses. Students exempted from all Level 1 courses may complete the degree programme in a minimum of four or a maximum of eight semesters of full-time study from the time of transfer. Students exempted from all Level 1 courses and some Level 2 and/or Level 3 courses may complete the degree programme in a minimum of two semesters of full-time study from the time of transfer.

38. (a) A student who wishes to take academic courses as an exchange/transfer student at an institution other than the UWI and to apply those credits toward the degree must obtain written approval in advance from the Dean. Failure to obtain written approval in advance may preclude the acceptance of the credits.

(b) A student must have a minimum GPA of 3.00 by the end of Semester II to be approved as an exchange/transfer student in the following academic year.

(c) Where the course to be taken is to be substituted for a UWI course, the content of the course must be certified by the relevant Department as being equivalent to the UWI course. Course outlines and syllabuses must be provided by the student in order to permit the evaluation of the course content.

(d) A student may not take courses for degree credit at an institution other than the UWI during the semester in which he or she completes or is expected by the Faculty to complete the requirements for graduation from the UWI.

J. AEGROATAT DEGREE

39. (a) A candidate who, by reason of illness, was prevented from attending examinations or part of the examinations associated with a Level 2 or 3 course in the year of anticipated graduation may apply to the Board for Undergraduate Studies through the University Registrar, for an Aegrotat pass in the course. Such an application will be granted only if all the following conditions are satisfied:

(i) The appropriate Head of Department reports that, on the basis of the candidate's performance during the period preceding the examinations, the candidate was expected to pass the examinations concerned and has satisfactorily completed any associated course work.

(ii) The application reaches the University Registrar not later than 30 days after the date of the last paper in the examination concerned.
(iii) The application is accompanied by a medical certificate attesting to the illness and issued by a medical practitioner recognized for this purpose by the University.

(b) No grade will be awarded in respect of an Aegrotat pass, and a candidate having been awarded an Aegrotat pass will not be allowed to re-enter the examination for the course concerned on a subsequent occasion. An Aegrotat pass may not be used to satisfy a pre-requisite for other Level 2 and/or Level 3 courses.

(c) A student who, having satisfactorily completed the degree programme, includes Aegrotat passes in courses counted for the degree programme, will be eligible for the award of an Aegrotat degree if both of the following conditions are satisfied:

(i) The courses in which Aegrotat passes have been granted (and which need to be counted toward the award of the degree) are equivalent to no more than 24 credits.

(ii) No more than 12 credits mentioned in (i) above arise from courses making up the candidate’s major.

(iii) The Aegrotat degree will be awarded without Honours.
INDEX TO THE REGULATIONS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absence</td>
<td>16, 22, 25, 26</td>
</tr>
<tr>
<td>Admission requirements</td>
<td>1, 2</td>
</tr>
<tr>
<td>Advanced part</td>
<td>13b</td>
</tr>
<tr>
<td>Aegrotat degree</td>
<td>39</td>
</tr>
<tr>
<td>Approved Science subject</td>
<td>1, 2, Appendix I</td>
</tr>
<tr>
<td>Associate degree</td>
<td>2</td>
</tr>
<tr>
<td>Attendance</td>
<td>7a, 16, 22</td>
</tr>
<tr>
<td>Audited courses</td>
<td>10</td>
</tr>
<tr>
<td>Change of major</td>
<td>15a</td>
</tr>
<tr>
<td>Change of minor</td>
<td>15a</td>
</tr>
<tr>
<td>Change of registration</td>
<td>9</td>
</tr>
<tr>
<td>Co-curricular credits</td>
<td>5</td>
</tr>
<tr>
<td>Contact hours</td>
<td>6</td>
</tr>
<tr>
<td>Course length</td>
<td>6</td>
</tr>
<tr>
<td>Course load</td>
<td>13, 14</td>
</tr>
<tr>
<td>Courses, at other institutions</td>
<td>35d, 38</td>
</tr>
<tr>
<td>Courses, maximum</td>
<td>14</td>
</tr>
<tr>
<td>Courses, minimum</td>
<td>13</td>
</tr>
<tr>
<td>Coursework</td>
<td>17, 21, 39i</td>
</tr>
<tr>
<td>Credit</td>
<td>Appendix IV</td>
</tr>
<tr>
<td>Credit, maximum</td>
<td>14</td>
</tr>
<tr>
<td>Credit, minimum</td>
<td>13</td>
</tr>
<tr>
<td>Credits, co-curricular</td>
<td>5</td>
</tr>
<tr>
<td>Credits, in-Faculty</td>
<td>7bi</td>
</tr>
<tr>
<td>Credits, required</td>
<td>7b</td>
</tr>
<tr>
<td>Debarred from exams</td>
<td>22</td>
</tr>
<tr>
<td>Declaration of major</td>
<td>15a</td>
</tr>
<tr>
<td>Deemed to have withdrawn</td>
<td>26</td>
</tr>
<tr>
<td>Degree length</td>
<td>7a, 31</td>
</tr>
<tr>
<td>Degree requirements</td>
<td>7, 15b</td>
</tr>
<tr>
<td>Employment</td>
<td>8</td>
</tr>
<tr>
<td>Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Exchange</td>
<td>38</td>
</tr>
<tr>
<td>Exemptions</td>
<td>36, 37</td>
</tr>
<tr>
<td>Extension</td>
<td>31</td>
</tr>
<tr>
<td>Financial obligations</td>
<td>9</td>
</tr>
<tr>
<td>Foundation course</td>
<td>5, 7b</td>
</tr>
<tr>
<td>Four-year degree</td>
<td>1, 12a</td>
</tr>
<tr>
<td>Full-time</td>
<td>8, 13, 14, 28, 31</td>
</tr>
<tr>
<td>GPA</td>
<td>1b, 5e, 7c, 23, 24, 27, 35c,d,e, 38b</td>
</tr>
<tr>
<td>GPA, Cumulative</td>
<td>7c, 23b</td>
</tr>
<tr>
<td>GPA, Honours</td>
<td>23c</td>
</tr>
<tr>
<td>GPA, Semester</td>
<td>23a</td>
</tr>
<tr>
<td>Illness</td>
<td>10, 39</td>
</tr>
<tr>
<td>In-Faculty courses</td>
<td>7bi</td>
</tr>
<tr>
<td>Leave of absence</td>
<td>25, 33</td>
</tr>
<tr>
<td>Level II</td>
<td>13b</td>
</tr>
<tr>
<td>Major</td>
<td>4, 15a, Appendix II</td>
</tr>
<tr>
<td>Matriculation</td>
<td>1, 2</td>
</tr>
<tr>
<td>Medical certificates</td>
<td>10, 39</td>
</tr>
<tr>
<td>Minor</td>
<td>4, 15a</td>
</tr>
<tr>
<td>Option</td>
<td>4, 7bii</td>
</tr>
<tr>
<td>Oral exam</td>
<td>20</td>
</tr>
<tr>
<td>Out-of-faculty course</td>
<td>4bii, 5, 7bi</td>
</tr>
<tr>
<td>Overlap</td>
<td>12c</td>
</tr>
<tr>
<td>Part-time</td>
<td>8, 14, 28</td>
</tr>
<tr>
<td>Performance, unsatisfactory</td>
<td>22, 29, 34</td>
</tr>
<tr>
<td>Persistent neglect</td>
<td>34</td>
</tr>
<tr>
<td>Practical</td>
<td>18, 21</td>
</tr>
<tr>
<td>Preliminary</td>
<td>5a</td>
</tr>
<tr>
<td>Re-admission</td>
<td>27, 35</td>
</tr>
<tr>
<td>Re-entry</td>
<td>27, 35</td>
</tr>
<tr>
<td>Repeating a course</td>
<td>11, 12c, 21</td>
</tr>
<tr>
<td>Required to withdraw</td>
<td>28, 29, 30, 31, 34, 35</td>
</tr>
<tr>
<td>Service course</td>
<td>5</td>
</tr>
<tr>
<td>Summer school</td>
<td>28, 35e</td>
</tr>
<tr>
<td>Supplemental exam</td>
<td>19, 21</td>
</tr>
<tr>
<td>Three-year degree</td>
<td>2, 12b</td>
</tr>
<tr>
<td>Term</td>
<td>References</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Time limit</td>
<td>30, 31</td>
</tr>
<tr>
<td>Transfer</td>
<td>36, 37, 38</td>
</tr>
<tr>
<td>Unsatisfactory performance</td>
<td>22, 29, 30a, 34</td>
</tr>
<tr>
<td>Voluntary withdrawal</td>
<td>25, 27</td>
</tr>
<tr>
<td>Warning</td>
<td>29</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 35</td>
</tr>
</tbody>
</table>
APPENDIX I

(a) LIST OF APPROVED SCIENCE CAPE / GCE A-LEVEL SUBJECTS

Applied Mathematics *
Biology
Botany
Chemistry
Computer Science
Environmental Science
Further Mathematics *
Geography
Geology
Physics
Pure & Applied Mathematics
Pure Mathematics*
Zoology

* The following cannot be counted together:
(i) Further Mathematics with Applied Mathematics CAPE/GCE A-Level;
(ii) Mathematics (Pure and Applied) with Pure Mathematics or Applied Mathematics at CAPE/GCE A-Level.

(b) LIST OF APPROVED SCIENCE CSEC GENERAL PROFICIENCY/GCE O-LEVEL SUBJECTS:

Additional Mathematics
Biology
Chemistry
Computer Science
Geography
Information Technology (General)
Integrated Science
Physics
APPENDIX II

LIST OF MAJORS IN THE UWI SCIENCE FACULTIES:

Agriculture
Alternative Energy
Applied Chemistry
Biochemistry *
Biology*
Biotechnology
Botany
Chemistry *
Computer Science *
Ecology *
Electronics *
Environmental Biology
Environmental Science*
Experimental Biology
Environmental Science

Food Chemistry
Geology
Information Technology *
Mathematics *
Meteorology *
Microbiology *
Molecular Biology
Physics *
Software Engineering
Zoology

* Offered at Cave Hill

APPENDIX III

FOUNDATION COURSES

FOUN 0100 – Fundamentals of Written English
¹FOUN 1006 – Exposition for Academic Purposes
¹FOUN 1008 – An Introduction to Professional Writing
*FOUN 1101 – Caribbean Civilization
²FOUN 1201 – Science, Medicine & Technology in Society
*FOUN 1301 – Law, Governance, Economy & Society

¹ Both courses cannot be taken - students must choose one or the other
² Not normally available to Science Faculty Students

*A student may substitute one of these with a Foreign Language course.
FOUN 0100 FUNDAMENTALS OF WRITTEN ENGLISH (0 Credits)
This course is required for all students entering the University who are not exempted from the Proficiency Test or have not taken it or failed it.

FOUN 1006 EXPOSITION FOR ACADEMIC PURPOSES (3 Credits)
This course is designed to: (1) equip students with the study and research skills they will need in order to get the maximum benefit from all their courses at the University; (2) familiarize them with the linguistic situation in the Caribbean and break down common misconceptions they usually have about it; (3) introduce students to the rhetorical modes of discourse; and (4) develop skill in critical thinking and reading.
(Cannot be taken with FOUN1008)

FOUN 1008 AN INTRODUCTION TO PROFESSIONAL WRITING (3 Credits)
This course is designed to help students develop skills common to all professional, workplace-oriented writing, whether in business or science.
(Cannot be taken with FOUN1006)

FOUN 1101 CARIBBEAN CIVILIZATION (3 Credits)
This course is designed to develop an awareness of the main process of cultural development in Caribbean societies, highlighting the factors, the problematics and the creative output that have fed the emergence of Caribbean identities; to develop a perception of the Caribbean as wider than island nations or linguistic blocs; to stimulate students' interest in, and commitment to Caribbean civilization and to further their self-determination.

FOUN 1210 SCIENCE, MEDICINE AND TECHNOLOGY IN SOCIETY (3 Credits)
The overall aim of the course is to develop the ability of the student to engage in an informed manner in public discourse on matters pertaining to the impact of science, medicine and technology on society. The course will help students to appreciate the essential characteristics of the scientific method as a mode of enquiry into nature and to understand why it provides the foundations of the technological world.
(Students in the Faculty of Science and Technology cannot take this course)

FOUN 1301 LAW, GOVERNANCE, ECONOMY AND SOCIETY (3 Credits)
This is a multi-disciplinary course of the Faculty of Social Sciences which is designed mainly for non-Social Sciences students. The course will introduce students to some of the major institutions in Caribbean society. It will expose them to both historical and contemporary aspects of Caribbean society, including Caribbean legal, political and economic systems. In addition, Caribbean culture and Caribbean social problems are discussed.

REPLACING A FOUNDATION COURSE WITH A FOREIGN LANGUAGE COURSE
Students in the Faculty of Science and Technology may replace FOUN1101 Caribbean Civilization OR FOUN1301 Law, Governance, Economy and Society with a foreign language course in French, Spanish, Portuguese or Chinese.
APPENDIX IV

FST CREDIT DEFINITION

APPENDIX V

GRADING SYSTEM

Table 1: Mark-to-Grade Conversion & Quality Points (GPA SYSTEM) Table 2: GPA to Honours Conversion

<table>
<thead>
<tr>
<th>Grade</th>
<th>Mark (%)</th>
<th>QP</th>
<th>Grade</th>
<th>Mark (%)</th>
<th>QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>90-100</td>
<td>4.30</td>
<td>C+</td>
<td>55-59</td>
<td>2.30</td>
</tr>
<tr>
<td>A</td>
<td>80-89</td>
<td>4.00</td>
<td>C</td>
<td>50-54</td>
<td>2.00</td>
</tr>
<tr>
<td>A-</td>
<td>75-79</td>
<td>3.70</td>
<td>F1</td>
<td>40-49</td>
<td>1.70</td>
</tr>
<tr>
<td>B+</td>
<td>70-74</td>
<td>3.30</td>
<td>F2</td>
<td>30-39</td>
<td>1.30</td>
</tr>
<tr>
<td>B</td>
<td>65-69</td>
<td>3.00</td>
<td>F3</td>
<td>0-29</td>
<td>0.00</td>
</tr>
<tr>
<td>B-</td>
<td>60-64</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: GPA to Honours Conversion

<table>
<thead>
<tr>
<th>Class of Honours</th>
<th>Cumulative GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>3.60 and above</td>
</tr>
<tr>
<td>Upper Second</td>
<td>3.00 - 3.59</td>
</tr>
<tr>
<td>Lower Second</td>
<td>2.50 - 2.99</td>
</tr>
<tr>
<td>Pass</td>
<td>2.00 - 2.49</td>
</tr>
</tbody>
</table>
APPENDIX VI

OPTIONS IN CONJUNCTION WITH OTHER FACULTIES

A. Programmes with the Faculty of Social Sciences

B. Programmes with the Faculty of Humanities & Education

A. PROGRAMMES WITH THE FACULTY OF SOCIAL SCIENCES

Under an agreement with the Faculty of Social Sciences, a limited number of students will be allowed to pursue the following cross-Faculty programmes, subject to timetable restrictions:

- Computer Science & Accounting
- Computer Science with Accounting
- Computer Science & Economics
- Computer Science with Economics
- Computer Science & Management
- Computer Science with Management
- Information Technology & Accounting
- Information Technology with Accounting
- Information Technology & Economics
- Information Technology with Economics
- Information Technology & Management
- Information Technology with Management
- Mathematics and Accounting
- Mathematics with Accounting
- Mathematics & Economics
- Mathematics with Economics
- Science Major & Management
- Science Major with Management
BSc COMPUTER SCIENCE AND ACCOUNTING

LEVEL I (33 Credits)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost and Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (27 Credits)
COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I
MGMT2023 Financial Management I

AND Six (6) Credits from Level II Accounting Courses

LEVEL III (15 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
ACCT3043 Auditing I

AND Either
ACCT3040 Accounting Theory
OR
ACCT3041 Advanced Financial Accounting

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Six (6) Credits from Level III Accounting Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course
BSc COMPUTER SCIENCE WITH ACCOUNTING

LEVEL I (33 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVEL III (15 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
ACCT3043 Auditing I

AND Either
ACCT3040 Accounting Theory
OR
ACCT3041 Advanced Financial Accounting

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc COMPUTER SCIENCE AND ECONOMICS

LEVEL I (24 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II & III (60 CREDITS)

LEVEL II (30 Credits)
COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
ECON2026 Statistical Methods II

LEVEL III (12 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
ECON3049 Econometrics I

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Four Level II/III ECON courses (12 Credits)

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
FOUN 1101 Caribbean Civilization
FOUN1301 Law, Economy, Governance and Society

A student may substitute one of these with a Foreign Language course.
BSc COMPUTER SCIENCE WITH ECONOMICS

LEVEL I (24 Credits)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II & III (60 CREDITS)

LEVEL II (27 Credits)
COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II

AND One Level II/III ECON course (3 Credits)

LEVEL III (9 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I

AND at Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Fifteen (15) Level II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular Course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc COMPUTER SCIENCE AND MANAGEMENT

LEVEL I (33 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost and Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVEL II (33 Credits)
COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (12 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
MGMT3017 Human Resources Management

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Nine (9) Credits from LEVEL III Management Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course
BSc COMPUTER SCIENCE WITH MANAGEMENT

LEVEL I (33 CREDITS)
- COMP1170 Entrepreneurship for Computer Scientists
- COMP1180 Mathematics for Computer Science I
- COMP1205 Computing I
- COMP1210 Computing II
- COMP1215 UNIX
- MATH1230 Introductory Applied Statistics I
- ACCT1002 Introduction to Financial Accounting
- ACCT1003 Cost & Management Accounting I
- ECON1001 Introduction to Microeconomics
- ECON1002 Introduction to Macroeconomics
- MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (27 Credits)
- COMP2210 Mathematics for Computer Science II
- COMP2220 Computer System Architecture
- COMP2225 Software Engineering
- COMP2232 Object-Oriented Programming Concepts
- COMP2611 Data Structures
- MKTG2001 Principles of Marketing
- MGMT2006 Management Information Systems I
- MGMT2008 Organizational Behaviour
- MGMT2023 Financial Management I

LEVEL III (12 Credits)
- COMP3310 Algorithms
- COMP3320 Design Principles of Operating Systems
- COMP3330 Database Management Systems I
- MGMT3017 Human Resources Management

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Fifteen (15) Level II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
- FOUN1006 Exposition For Academic Purposes
 OR
 - FOUN1008 An Introduction to Professional Writing

AND
- *FOUN 1101 Caribbean Civilization*
- *FOUN1301 Law, Economy, Governance and Society*
 A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY AND ACCOUNTING

LEVEL I (33 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost and Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVEL II/III (60 CREDITS)

LEVEL II (27 CREDITS)
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I
MGMT2023 Financial Management I

AND Six (6) Credits from Level II Accounting Courses

LEVEL III (15 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
ACCT3043 Auditing I

AND Either
ACCT3040 Accounting Theory

OR
ACCT3041 Advanced Financial Accounting

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Six (6) Credits from Level III Accounting Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes

OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY WITH ACCOUNTING

LEVEL I (33 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVEL II/III (60 CREDITS)

LEVEL II (24 Credits)
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I

LEVEL III (15 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
ACCT3043 Auditing I

AND Either
ACCT3040 Accounting Theory

OR
ACCT3041 Advanced Financial Accounting

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Fifteen (15) Level II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY AND ECONOMICS

LEVEL I (24 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVEL II/III (60 CREDITS)

LEVEL II (30 Credits)
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
ECON2026 Statistical Methods II

LEVEL III (12 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
ECON3049 Econometrics I

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Four Level II/III ECON courses (12 Credits)

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY WITH ECONOMICS

LEVEL I (24 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVEL II (27 Credits)
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II

AND One Level II/III ECON course (3 Credits)

LEVEL III (9 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Fifteen (15) Level II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY AND MANAGEMENT

LEVEL I (33 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost and Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II/III (60 CREDITS)

LEVEL II (33 Credits)
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
MKTG2001 Principles of Marketing
MGMT2006 Management Information Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (12 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
MGMT3017 Human Resources Management

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Nine (9) Credits from Level III Management Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY WITH MANAGEMENT

LEVEL I (33 CREDITS)
- COMP1170 Entrepreneurship for Computer Scientists
- COMP1180 Mathematics for Computer Science I
- COMP1205 Computing I
- COMP1210 Computing II
- COMP1215 UNIX
- MATH1230 Introductory Applied Statistics I
- ACCT1002 Introduction to Financial Accounting
- ACCT1003 Cost & Management Accounting I
- ECON1001 Introduction to Microeconomics
- ECON1002 Introduction to Macroeconomics
- MGMT1001 Introduction to Management

LEVEL II/III (60 CREDITS)

LEVEL II (27 Credits)
- COMP2225 Software Engineering
- COMP2232 Object-Oriented Programming Concepts
- COMP2410 Computing in the Digital Age
- COMP2415 Information Technology Engineering
- COMP2611 Data Structures
- MKTG2001 Principles of Marketing
- MGMT2006 Management Inform. Systems I
- MGMT2008 Organizational Behaviour
- MGMT2023 Financial Management I

LEVEL III (12 Credits)
- COMP3330 Database Management Systems I
- COMP3415 Database Management Systems II
- COMP3435 User Interface Design
- MGMT3017 Human Resources Management

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Fifteen (15) Level II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
- FOUN1006 Exposition For Academic Purposes
 OR
 - FOUN1008 An Introduction to Professional Writing

AND
- *FOUN 1101 Caribbean Civilization
- *FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc MATHEMATICS AND ACCOUNTING

LEVEL I (33 CREDITS)
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming and Mathematical Software
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II/III (60 CREDITS)

LEVEL II (24 Credits)
MATH2304 Multivariable Calculus
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2305 Differential Equations
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
MGMT2023 Financial Management I

AND Six (6) Credits From Level II Management/Accounting Courses

LEVEL III (21 Credits)
ACCT2017 Management Accounting I
ACCT3043 Auditing I

AND Either
ACCT3040 Accounting Theory

OR
ACCT3041 Advanced Financial Accounting

MATH2310 Introductory Applied Statistics I
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II

AND
MATH3555 Complex Analysis

OR
MATH3560 Metric Spaces & Topology

AND 3 Credits from Level III Mathematics Elective Courses

AND Six (6) Credits From Level III Accounting Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes

OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc MATHEMATICS WITH ACCOUNTING

LEVEL I (33 CREDITS)
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming and Mathematical Software
MATH1230 Introductory Applied Statistics
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II/III (60 CREDITS)

LEVEL II (24 Credits)
MATH2304 Multivariable Calculus
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2305 Differential Equations
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I

LEVEL III (18 Credits)
ACCT3043 Auditing I
AND Either
ACCT3040 Accounting Theory
OR
ACCT3041 Advance Financial Accounting

MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II
AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces & Topology

AND Three (3) Credits from Level III
Mathematics Elective Courses

AND Fifteen (15) Level II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc MATHEMATICS AND ECONOMICS

LEVEL I (24 CREDITS)
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming and Mathematical Software
MATH1230 Introductory Applied Statistics
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II/III (60 CREDITS)

LEVEL II (30 Credits)
MATH2304 Multivariable Calculus
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2305 Differential Equations
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
ECON2026 Statistical Methods II

LEVEL III (15 Credits)
ECON3049 Econometrics I
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II

AND
MATH3555 Complex Analysis

OR
MATH3560 Metric Spaces & Topology

AND Three (3) Credits from Level III
Mathematics Elective Courses

AND Four Level II/III ECON courses (12 Credits)

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes

OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc MATHEMATICS WITH ECONOMICS

LEVEL I (24 CREDITS)
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming and Mathematical Software
MATH1230 Introductory Applied Statistics
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II/III (60 CREDITS)

LEVEL II (30 Credits)
MATH2304 Multivariable Calculus
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2305 Differential Equations
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II

AND One Level II/III ECON course (3 Credits)

LEVEL III (12 Credits)
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II

AND
MATH3555 Complex Analysis

OR
MATH3560 Metric Spaces & Topology

AND Three (3) Credits from Level III

Mathematics Elective Courses

AND Fifteen (15) Level II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes

OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
SCIENCE AND MANAGEMENT

LEVEL I

Required Level 1 Courses for Science Major plus
COMP1205 Computing I
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III

Thirty (30) credits of required Level II/III Courses for Science Major

AND Nine (9) Credits from LEVEL III Management Courses

AND

FOUNDATION COURSES

FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
SCIENCE WITH MANAGEMENT

LEVEL I

Required Level 1 Courses for Science Major
PLUS
COMP1205 Computing I
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III

Thirty (30) credits of required Level II/III Courses for Science Major
AND
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I
MGMT3017 Human Resources Management

AND Fifteen (15) Level II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
The following Science Majors are currently being offered with a Major/Minor in Management

BSc CHEMISTRY AND MANAGEMENT

LEVEL I (36 CREDITS)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
COMP1205 Computing I
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (36 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (6 Credits)
CHEM3625 Laboratory Methods in Chemistry III
MGMT3017 Human Resources Management

AND 6 Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND 3 Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

AND Nine (9) Credits from Level III Management Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc CHEMISTRY WITH MANAGEMENT

LEVEL I (36 CREDITS)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
COMP1205 Computing I
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (30 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
MKTG2001 Principles of Marketing
MGMT2006 Management Information Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

LEVEL III (6 Credits)
CHEM3625 Laboratory Methods in Chemistry III
MGMT3017 Human Resources Management

AND 6 Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND 3 Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM218 Environmental Chemistry and Toxicology**

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ENVIRONMENTAL SCIENCE AND MANAGEMENT

LEVEL I (30 CREDITS)
METE1110 Introduction to Oceans & Climate
OR
ENSC1000 Earth and its Environment
AND
ENSC1001 Intro. To Physical Geology: Dynamic Earth
COMP1205 Computing I
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics I
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVEL III (15 Credits)
MGMT3017 Human Resources Management

AND TWENTY-ONE CREDITS FROM:
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVELS II & III (60 CREDITS)

LEVEL II (27 Credits)
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

AND Nine (9) Credits from LEVEL III Management Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ENVIRONMENTAL SCIENCE WITH MANAGEMENT

LEVEL I (30 CREDITS)
METE1110 Introduction to Oceans & Climate
OR
ENSC1000 Earth and its Environment
AND
ENSC1001 Intro. To Physical Geology: Dynamic Earth
COMP1205 Computing I
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (21 Credits)
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

LEVEL III (15 Credits)
MGMT3017 Human Resources Management

AND TWENTY-ONE CREDITS FROM:
ENSC2003 Sustainable Energy Systems
ECOL2461 Caribbean Island Biodiversity
ECOL2460 Essentials of Ecology
CHEM2725 Chemistry of the Environment
ENSC3000 Natural Hazards and Disasters
METE35XX Climate, Biosphere and Ecosystems
CHEM3218 Environmental Chemistry and Toxicology
PHIL3100 Environmental Ethics
MDSC3003 Environmental Health
LAW3450 Caribbean Environmental Law
ENSC3020 Case Study in Environmental Science
ENSC3900 Research Project in Environmental Science

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc METEOROLOGY AND MANAGEMENT

LEVEL I (42 CREDITS)
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B
COMP1205 Computing I
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (63 CREDITS)

LEVEL II (35 Credits)
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2160 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 Mathematical Methods in Physics I
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (15 Credits)
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#
MGMT3017 Human Resources Management

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere and Ecosystems

OR Four (4) Credits from:
METE3400 Weather Radar and Satellites#

AND Nine (9) Credits from LEVEL III Management Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

#4 Credit Courses
BSc METEOROLOGY WITH MANAGEMENT

LEVEL I (42 CREDITS)
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B
COMP1205 Computing I
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Cost & Management Accounting I
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (29 Credits)
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2100 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 — Mathematical Methods in Physics I
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

LEVEL III (15 Credits)
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#
MGMT3017 Human Resources Management

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere and Ecosystems

OR Four (4) Credits from:
METE3400 Weather Radar and Satellites#

AND Twelve (12)/Thirteen (13) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

#4 Credit Courses
B. PROGRAMMES WITH THE FACULTY OF HUMANITIES & EDUCATION

Under an agreement with the Faculty of Humanities & Education, a limited number of students will be allowed to pursue the following programmes, subject to timetable restrictions:

- Science Major & Psychology Major
- Science Major with Psychology Minor
- Science Major with Spanish Minor
- Science Major with Education Minor

The Psychology Major comprises 30 credits of specified advanced courses while the Psychology and Spanish Minor each comprise 15 credits of specified advanced courses. In addition, students must satisfy the requirements of their Science Major and complete a minimum total of 93 credits.
SCIENCE AND PSYCHOLOGY

LEVEL I

Required Level I Courses for Science Major plus

PSYC1003 Introduction to Psychology
PSYC1004 Introduction to Social Psychology
PSYC1012 Introduction to Developmental Psychology
PSYC1013 Introduction to Research Methods In Psychology
PSYC1015 Historical Issues in Psychology

LEVELS II & III

Thirty (30) credits of required Level II/III Courses for Science Major

PLUS

PSYC2002 Abnormal Psychology
PSYC2003 Physiological Psychology
PSYC2004 Personality Theory I
PSYC2008 Introduction to Cognitive Psychology
PSYC2014 Statistics And Research Design II
PSYC2022 Developmental Psychology II: From Conception to Adolescence
PSYC3017 Personality Theory II
PSYC3030 Introduction to Clinical Psychology
PSYC3011 Research Paper in Psychology** (6 credits)

AND 9 CREDITS: FOUNDATION COURSES

FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

** Students registered for a Science Research Project course (eg: BIOC3950, BIOL3950, CHEM3500, CHEM3505, COMP 3910) must replace PSYC3011 by 6 credits from the electives listed above.
SCIENCE WITH PSYCHOLOGY

LEVEL I

Required Level I Courses for Science Major plus

PSYC1003 Introduction to Psychology
PSYC1004 Introduction to Social Psychology
PSYC1013 Introduction to Research Methods In Psychology

AND
3 Level I Credits from any Faculty**

LEVELS II & III

Thirty (30) credits of required Level II/III Courses for Science Major

PLUS
PSYC2003 Physiological Psychology
PSYC2004 Personality Theory I
PSYC2012 Developmental Psychology
PSYC2014 Statistics And Research Design II
PSYC3016 Research Paper in Psychology [Minor] (3 Credits)

AND Twelve (12) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**If needed to satisfy the Level I requirement.
SCIENCE WITH SPANISH

LEVEL I

Required Level I Courses for Science Major plus
SPAN1001 Spanish Language IA
SPAN1002 Spanish Language IB

AND 3 or 6 Level I credits from any Faculty**

LEVELS II & III

Thirty (30) credits of required Level II/III Courses for Science Major

PLUS
SPAN2001 Spanish Language IIA
SPAN2002 Spanish Language IIB
SPAN2214 Hispanic Culture
SPAN3502 International Business Spanish
SPAN3503 Spanish for Tourism

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**As required to satisfy the Level I requirement.
SCIENCE WITH EDUCATION

LEVEL I

Required Level I Courses for Science Major plus

EDPS1001 Introduction to Human Development

AND 6 or 9 Level I credits from any Faculty**

LEVELS II & III

Thirty (30) credits of required Level II/III Courses for Science Major

PLUS

EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education
EDSO3102 The Social Context of Education

AND One of the following:
EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science

AND One of the following:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES

FOUN1006 Exposition For Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**As required to satisfy the Level I requirement.
The following Science Majors are currently being offered with a Major/Minor in Education, Psychology and Spanish:

BSc BIOLOGY WITH EDUCATION

LEVEL I (24 CREDITS)
- **BIOC1015** Introduction to Biochemistry
- **BIOL1020** Diversity of Life I
- **BIOL1025** Diversity of Life II
- **BIOL1030** Introduction to Genetics
- **EDPS1001** Introduction to Human Development

AND Six (6) Credits from Biological Science Electives Courses:
- Level II BIOC/BIOL/ECOL/MICR courses
- Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (3 Credits)
- **EDSO3102** The Social Context of Education

LEVELS II & III (60 CREDITS)

LEVEL II (12 Credits):
- **BIOC2371** Molecular Techniques
- **BIOI2373** Skills for Biologists
- **EDCU2101** Introduction to Curriculum, Theory, Planning & Practice
- **EDRS2201** Introduction to Research Methods in Education

AND Three (3) Credits from:
- **EDMA2111** The Structure and Nature of Mathematics
- **EDSC2110** The Structure and Nature of Science

LEVEL III (3 Credits)
- **EDSO3102** The Social Context of Education

AND Six (6) Credits from Biological Sciences Elective Courses:
- Level III BIOC/BIOL/ECOL/MICR courses ¹

AND Three (3) Credits from:
- **EDPH2016** Philosophy of Education
- **EDME2211** Testing, Measurement & Evaluation I
- **EDEA2304** Introduction to Educational Administration
- **EDSE2924** Introduction to Special Education
- **EDDK3304** Media & Technology in Education
- **EDTE3404** Issues in Teacher Education

AND Fifteen (15) Levels II and III Credits from any Faculty. Three (3) of these Credits can come from a Co-Curricular course.

AND Nine (9) CREDITS: FOUNDATION COURSES
- **FOUN1006** Exposition For Academic Purposes
- **OR**
- **FOUN1008** An Introduction to Professional Writing

AND
- *FOUN 1101 Caribbean Civilization*
- *FOUN1301 Law, Economy, Governance and Society*
- *A student may substitute one of these with a Foreign Language course.*
BSc BIOLOGY AND PSYCHOLOGY

LEVEL I (27 CREDITS)
- BIOC1015 Introduction to Biochemistry
- BIOL1020 Diversity of Life I
- BIOL1025 Diversity of Life II
- BIOL1030 Introduction to Genetics
- PSYC1003 Introduction to Psychology
- PSYC1004 Introduction to Social Psychology
- PSYC1012 Introduction to Developmental Psychology
- PSYC1013 Intro. to Research Methods In Psychology
- PSYC1015 Historical Issues in Psychology

LEVELS II & III (60 CREDITS)

LEVEL II (24 Credits):
- BIOC2371 Molecular Techniques
- BIOL2373 Skills for Biologists
- PSYC2002 Abnormal Psychology
- PSYC2003 Physiological Psychology
- PSYC2004 Personality Theory I
- PSYC2008 Introduction to Cognitive Psychology
- PSYC2014 Statistics And Research Design II
- PSYC2022 Developmental Psychology II: From Conception to Adolescence

AND Two courses (6 Credits) from:
- BIOC2365 Primary Metabolism
- ECOL2460 Essentials of Ecology
- MICR2260 Essential Microbiology

AND Two courses (6 Credits) from:
- BIOL2166 Advanced Genetics I
- BIOL2370 Flowering Plant Physiology
- BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from biological Sciences Elective Courses:
- Level II BIOC/BIOL/ECOL/MICR courses
- Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (12 Credits)
- PSYC3017 Personality Theory II
- PSYC3030 Introduction to Clinical Psychology
- PSYC3011 Research Paper In Psychology** (6 credits)

AND Six (6) credits from Biological Sciences Elective Courses:
- Level III BIOC/BIOL/ECOL/MICR courses

AND 9 CREDITS: FOUNDATION COURSES
- FOUN1006 Exposition For Academic Purposes
- OR
- FOUN1008 An Introduction to Professional Writing

AND
- *FOUN 1101 Caribbean Civilization
- *FOUN1301 Law, Economy, Governance and Society
- *A student may substitute one of these with a Foreign Language course.

AND Six (6) Credits from Biological Sciences Elective Courses:
- Level II BIOC/BIOL/ECOL/MICR courses
- Level III BIOC/BIOL/ECOL/MICR courses
BSc BIOLOGY WITH PSYCHOLOGY

LEVEL I (24 CREDITS)
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
PSYC1003 Introduction to Psychology
PSYC1004 Introduction to Social Psychology
PSYC1013 Introduction to Research Methods In Psychology

AND 3 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (18 Credits):
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
PSYC2003 Physiological Psychology
PSYC2004 Personality Theory I
PSYC2012 Developmental Psychology
PSYC2014 Statistics And Research Design II

AND Two courses (6 Credits) from:
BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essential Microbiology

AND Two courses (6 Credits) from:
BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Biological Sciences Elective Courses:
Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (3 Credits)
PSYC3016 Research Project in Psychology (Minor) (3 Credits)

AND Six (6) credits from Biological Sciences Elective Courses:
Level III BIOC/BIOL/ECOL/MICR courses

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
BSc CHEMISTRY WITH EDUCATION

LEVEL I (24 CREDITS)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
EDPS1001 Introduction to Human Development

AND 9 Level I credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (24 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
EDCU2101 Intro. to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND 3 Credits (one course) from:
CHEM3630 Methods in instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

AND 3 Credits (one course) from:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Intro. to Educational Administration
EDSO3102 The Social Context of Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Levels II and III credits (five courses) from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc CHEMISTRY AND PSYCHOLOGY

LEVEL I (27 CREDITS)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
PSYC1003 Introduction to Psychology
PSYC1004 Introduction to Social Psychology
PSYC1012 Introduction to Developmental Psychology
PSYC1013 Introduction to Research Methods In Psychology
PSYC1015 Historical Issues in Psychology

LEVELS II & III (60 CREDITS)

LEVEL II (36 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
PSYC2002 Abnormal Psychology
PSYC2003 Physiological Psychology
PSYC2004 Personality Theory I
PSYC2008 Introduction to Cognitive Psychology
PSYC2014 Statistics And Research Design II
PSYC2022 Developmental Psychology II: From Conception to Adolescence

LEVEL III (15 Credits)
CHEM3625 Laboratory Methods in Chemistry III
PSYC3017 Personality Theory II
PSYC3030 Introduction to Clinical Psychology
PSYC3011 Research Paper In Psychology (6 credits)

AND 6 Credits (two courses) from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND 3 Credits (one course) from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc CHEMISTRY WITH PSYCHOLOGY

LEVEL I (24 CREDITS)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
PSYC1003 Introduction to Psychology
PSYC1004 Introduction to Social Psychology
PSYC1013 Introduction to Research Methods In Psychology

AND 3 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (30 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
PSYC2003 Physiological Psychology
PSYC2004 Personality Theory I
PSYC2012 Developmental Psychology
PSYC2014 Statistics And Research Design II

AND 6 Credits (two courses) from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND 3 Credits (one course) from:
CHEM3630 Methods in instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc COMPUTER SCIENCE WITH EDUCATION

LEVEL I (24 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
EDPS1001 Introduction to Human Development

AND
6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (21 Credits)
COMP2210 Mathematics for Computer Science II
COMP2611 Data Structures
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND 3 Credits (one course) from:
EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science

LEVEL III (12 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
EDSO3102 The Social Context of Education

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND 3 Credits (one course) from:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ELECTRONICS WITH EDUCATION

LEVEL I (24 CREDITS)
- ELET1200 Basic Circuit Analysis
- ELET1210 Digital Electronics I
- ELET1215 Digital Electronics II
- ELET1220 Introduction to Electronics
- COMP1205 Computing I
- MATH1190 Calculus A
- EDPS1001 Introduction to Human Development

AND

3 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (6 Credits)
- EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
- EDRS2201 Introduction to Research Methods in Education

AND at Least Twelve (12) Credits from:
- ELET2215 Microprocessor Systems
- ELET2220 Circuit Simulation & Applications
- ELET2225 Discrete Component Electronics
- ELET2230 Digital Communication Systems I
- ELET2235 Automation Technology & Applications
- ELET2240 Sensors & Actuation Devices
- PHYS2400 Mathematical Methods in Physics

AND 3 Credits (one course) from:
- EDMA2111 The Structure and Nature of Mathematics
- EDSC2110 The Structure and Nature of Science

LEVEL III (3 Credits)
- EDSO3102 The Social Context of Education

AND at Most Eighteen (18) Credits from:
- ELET3215 Microcontroller Technology
- ELET3220 Control Systems
- ELET3230 Essentials of Digital Signal Processing (DSP)
- ELET3235 Digital Communication Systems II
- ELET3240 Digital Communication Systems III
- ELET3250 Biomedical Instrumentation
- ELET3255 Wireless Communications
- ELET3260 Advanced Microprocessors & Systems
- ELET3290 Semester Electronics Research Project
- ELET3295 Major Electronics Research Project
- ELET3298 Group Electronics Research Project

AND 3 Credits (one course) from:
- EDPH2016 Philosophy of Education
- EDME2211 Testing, Measurement & Evaluation I
- EDEA2304 Introduction to Educational Administration
- EDSE2924 Introduction to Special Education
- EDTK3304 Media & Technology in Education
- EDTE3404 Issues in Teacher Education

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
- FOUN1006 Exposition For Academic Purposes
 OR
- FOUN1008 An Introduction to Professional Writing

AND
- *FOUN 1101 Caribbean Civilization
- *FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY WITH EDUCATION

LEVEL I (24 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
EDPS1001 Introduction to Human Development

AND
6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (21 Credits)
COMP2611 Data Structures
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND 3 Credits from:
EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science

LEVEL III (12 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
EDSO3102 The Social Context of Education

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND 3 Credits from:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc MATHEMATICS WITH EDUCATION

LEVEL I (24 CREDITS)
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software
EDPS1001 Introduction to Human Development

AND
6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (21 Credits)
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra I
MATH2315 Linear Algebra
MATH2321 Real Analysis I
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND 3 Credits from Mathematics Elective Courses

AND 3 Credits from:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

* A student may substitute one of these with a Foreign Language course.

LEVEL III (15 Credits)
EDSO3102 The Social Context of Education
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II

AND
MATH3555 Complex Analysis

OR
MATH3560 Metric Spaces & Topology
BSc METEOROLOGY WITH EDUCATION

LEVEL I (24 CREDITS)
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B
EDPS1001 Introduction to Human Development

AND
3 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (23 Credits)
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2100 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 - Mathematical Methods in Physics I
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND 3 Credits (one course) from:
EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science

LEVEL III (15 Credits)
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#
EDSO3102 The Social Context of Education

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere and Ecosystems

OR 4 Credits from:
METE3400 Weather Radar and Satellites#

AND 3 Credits (one course) from:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Twelve/Thirteen (12/13 Credits) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

#4 Credit Courses
BSc PHYSICS WITH EDUCATION

LEVEL I (24 CREDITS)
PHYS1200 Physics I: Mechanics of Transitional Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
MATH1190 Calculus A
MATH1195 Calculus B
EDPS1001 Introduction to Human Development

AND

6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (21 Credits)
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND 3 Credits from:
EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science

LEVEL III (12 Credits)
PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics
EDSO3102 The Social Context of Education

AND at least Six (6) Credits (two courses) from Physics Elective Courses:

AND 3 Credits from:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDSA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
COURSES BY SEMESTER: BIOLOGICAL AND CHEMICAL SCIENCES

SEMESTER I
PRELIMINARY
CHEM0615 Preliminary Chemistry I
BIOL0051 Biology I

LEVEL I
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
CHEM1110 Introduction to Organic Chemistry
CHEM1125 Introduction to Experimental Chemistry
METE1110 Introduction to Ocean and Climate
ENSC1000 Earth and its Environment

LEVEL II
BIOC2365 Primary Metabolism
BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
MICR2260 Essential Microbiology
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2513 Fundamentals of Teaching Chemistry
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System

LEVEL III
BIOC 3260 Principles of Biotechnology
BIOC 3265 Principles of Bioinformatics
BIOC 3370 Basis of Human Disease
BIOC 3290 Biochemistry Project for Minors
ECOL3461 Ecology of a Changing Planet
ECOL3463 Tropical Crop Ecology
ENSC3020 Case Study in Environmental Science
MICR3266 Ecology of Microorganisms
MICR3268 Microbial Pathogenesis
CHEM3167 Advanced Inorganic Chemistry
CHEM3620 Advanced Physical Chemistry

SEMESTER II
PRELIMINARY
CHEM0625 Preliminary Chemistry II
BIOL0052 Biology II

LEVEL I
BIOL1030 Introduction to Genetics
BIOC1015 Introduction to Biochemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
ENSC1001 Introduction to Physical Geology; Dynamic Earth

LEVEL II
BIOC2366 Protein Biochemistry
BIOC2370 Cell Signals
BIOC2371 Molecular Techniques
BIOL2371 Ecophysiology of Animals
BIOL2372 Plants for Caribbean Landscapes
BIOL2373 Skills for Biologists
ECOL2462 Marine Biota
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
CHEM2710 Intermediate Physical Chemistry
CHEM2720 Laboratory Methods in Chemistry II
CHEM2725 Chemistry of the Environment
CHEM2730 Quantitative Chemical Analysis
ENSC2002 Earth’s Climate
ENSC2003 Sustainable Energy Systems

LEVEL III
BIOC 3261 Mitochondrial Bioenergetics
BIOC 3290 Biochemistry Project for Minors
BIOL 3025 Molecular Plant Pathology
ECOL3100 Statistics for Ecologists
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3462 Behaviour: An Evolutionary Approach
ENSC3020 Case Study in Environmental Science
MICR3265 Microbiology of Food
CHEM3625 Laboratory Methods in Chemistry III
CHEM3630 Methods in Instrumental Analysis
CHEM3950 Basic Project in Chemistry
ENSC3000 Climate Variation and Change

MICR3267 Essential Virology
CHEM3175 Advanced Organic Chemistry
CHEM3625 Laboratory Methods in Chemistry III
CHEM3635 Biological Inorganic Chemistry
CHEM3800 Nanostructures and Supramolecular Chemistry
CHEM3950 Basic Project in Chemistry
CHEM3992 Special Topics in Physical Chemistry
ENSC3001 Natural Hazards and Disasters

YEAR-LONG COURSES
CHEM3955 Research Project in Chemistry
BIOC3990 Biochemistry Project
BIO13990 Biology Project
ECOL3990 Ecology Project
MICR3990 Microbiology Project
ENSC3900 Research Project in Environmental Science
*CHEM1125 Introduction to Experimental Chemistry

SUMMER COURSES
BIO12465 Tropical Horticulture
CHEM3990 Professional Placement for Chemists
ENSC3020 Case Study in Environmental Science
BIOLOGICAL SCIENCES

The Department of Biological & Chemical Sciences offers Single Majors in Biochemistry, Biology, Ecology and Microbiology as well as a Double Major in Biological Sciences. Biology, Biochemistry, Ecology and Microbiology Majors may not be combined; students wishing to pursue such Double Majors must instead register for the Biological Sciences Double Major. Only the Biology or Biochemistry Major may be combined with the Chemistry Major. Only the Biology or Ecology Major may be combined with the Environmental Science Major or Minor. Students wishing to combine a Biology, Biochemistry, Ecology or Microbiology Major with a Major of another discipline must seek the approval of the Dean and are advised that timetable clashes of courses may make it impossible to complete such degrees in the minimum 3 year period.

MAJOR IN BIOCHEMISTRY: [Course Descriptions](#)

LEVEL I - (24 Credits)
- BIOL1020 Diversity of Life I
- BIOL1025 Diversity of Life II
- BIOL1030 Introduction to Genetics
- CHEM1110 Introduction to Organic Chemistry
- CHEM1120 Introduction to Physical Chemistry
- CHEM1125 Introduction to Experimental Chemistry
- CHEM1130 Introduction to Inorganic Chemistry

LEVEL II - (15 Credits)
- BIOC2365 Primary Metabolism
- BIOC2371 Molecular Techniques
- BIOC2366 Protein Biochemistry

LEVEL III - (15 Credits)
- BIOC2370 Cell Signals
- BIOC3265 Principles of Bioinformatics

AND 12 Credits from among the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC2900</td>
<td>Biochemistry Exchange Elective</td>
</tr>
<tr>
<td>BIOC3370</td>
<td>Basis of Human Disease</td>
</tr>
<tr>
<td>BIOC3260</td>
<td>Principles of Biotechnology</td>
</tr>
<tr>
<td>BIOC3261</td>
<td>Mitochondrial Bioenergetics</td>
</tr>
<tr>
<td>BIOC3990</td>
<td>Biochemistry Project</td>
</tr>
<tr>
<td>BIOL3025</td>
<td>Molecular Plant Pathology</td>
</tr>
<tr>
<td>CHEM3635</td>
<td>Biological Inorganic Chemistry</td>
</tr>
</tbody>
</table>

AND 3 Credits from ONE OF the following:
- BIOL2166 Advanced Genetics I
- BIOC2370 Cell Signals

¹This course is offered in both semesters but it is recommended that Biochemistry Majors take this course in Semester 1.
MINOR IN BIOCHEMISTRY [Fifteen (15) Credits]: Course Descriptions

BIOC2366 Protein Biochemistry

AND ANY TWELVE (12) Credits from:
BIOC2365 Primary Metabolism
BIOC3370 Basis of Human Disease
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3290 Biochemistry Project for Minors
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry
MAJOR IN BIOLOGY: [Course Descriptions]

LEVEL I
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

LEVELS II & III (30 credits)

BOTH courses (6 credits):
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists ¹

Two courses (6 credits) from:
BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology ²
MICR2260 Essential Microbiology

Two courses (6 credits) from:
BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

Six (6) credits from:
Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

Six (6) credits from:
Level III BIOC/BIOL/ECOL/MICR courses

BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals
BIOL2372 Plants for Caribbean Landscapes
BIOL2463 Sustainable Land Use
BIOL2465 Tropical Horticulture
BIOL2466 Tropical Energy and Bioprocessing
BIOL2900 Biology Exchange Elective
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
ECOL2900 Ecology Exchange Elective
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
MICR2900 Microbiology Exchange Elective

Level III Courses:
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3267 Basis of Human Disease
BIOL3901 Multidisciplinary Project
BIOL3990 Biology Project
BIOC3265 Principles of Bioinformatics
BIOL3025 Molecular Plant Pathology
ECOL3100 Statistics for Ecologists
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3461 Ecology of a Changing Planet
ECOL3462 Behaviour: an Evolutionary Approach
ECOL 3463 Tropical Crop Ecology
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis

¹This course is offered in both semesters but it is recommended that Biology Majors take this course in Semester 2.
² Students pursuing the Biology & Chemistry Double Major should not choose this course as Ecology and Chemistry courses clash at Level III
MINOR IN BIOLOGY (Fifteen (15) Credits): [Course Descriptions]

BIOC2371 Molecular Techniques*
AND
BIOL2370 Flowering Plant Physiology
OR
BIOL2371 Ecophysiology of animals

AND Three 3-credit courses (9 credits) from Biological Sciences Elective Courses:
- Level II BIOC/BIOL/ECOL/MICR courses (excluding BIOL2373 Skills for Biologists)
- Level III BIOC/BIOL/ECOL/MICR courses

*BIOC2371 Molecular Techniques must be replaced in the BIOL Minor by any BIOC/BIOL/ECOL/MICR 3-credit, level 2 or 3 course when BIOC2371 Molecular Techniques is being used in the BIOC, ECOL or MICR major.
DOUBLE MAJOR IN BIOLOGICAL SCIENCES: Course Descriptions

LEVEL I
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

LEVELS II & III (60 credits)

ALL SEVEN courses (21 credits):
BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals
BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
MICR2260 Essential Microbiology

ONE of the following (6 credits)
BIOC3990 Biochemistry Exchange Elective
BIOL3990 Biology Project
ECOL3990 Ecology Project
MICR3990 Microbiology Project

Fifteen (15) credits from:
Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

Eighteen (18) credits from:
Level III BIOC/BIOL/ECOL/MICR courses

BIOLOGICAL SCIENCES ELECTIVE COURSES

Level II Courses:
BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2370 Cell Signals

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals
BIOL2372 Plants for Caribbean Landscapes
BIOL2463 Sustainable Land Use
BIOL2465 Tropical Horticulture
BIOL2466 Tropical Energy and Bioprocessing
BIOL2900 Biology Exchange Elective
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
ECOL2900 Ecology Exchange Elective
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
MICR2900 Microbiology Exchange Elective

Level III courses:
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3370 Basis of Human Disease
BIOL3901 Multidisciplinary Project
BIOL3990 Biology Project
BIOC3265 Principles of Bioinformatics
BIOL3025 Molecular Plant Pathology
ECOL3100 Statistics for Ecologists
ECOL3460 Biology and Ecology of Coral Reefs
ECOL3461 Ecology of a Changing Planet
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3463 Tropical Crop Ecology
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis
MAJOR IN ECOLOGY: Course Descriptions

LEVEL I (12 Credits)
BIOC1015 Introduction to Biochemistry*
BIOL1020 Diversity of Life I*
BIOL1025 Diversity of Life II*
BIOL1030 Introduction to Genetics*

LEVEL II (12 Credits)
BIOL2373 Skills for Biologists*+2
ECOL2460 Essentials of Ecology*
ECOL2461 Caribbean Island Biodiversity*
ECOL2462 Marine Biota*

LEVEL II or III (18 Credits)
Six (6) Credits:
ECOL3461 Ecology of a Changing Planet*
ECOL3100 Statistics for Ecologists*

AND Twelve (12) Credits from the following:

Level III ECOL elective courses
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3463 Tropical Crop Ecology
ECOL3462 Behaviour: an Evolutionary Approach
ECOL3990 Ecology Project (6 credits)

AND/OR
ENSC2000 Essentials of Oceanography**
MICR3266 Ecology of Microorganisms***
BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes

*Required courses
**Requires METE1110 Introduction to Oceans and Climate or ERSC1000 Earth and its Environment.
***Requires MICR2260 Essential Microbiology (or MICR2251 General Microbiology) and MICR2261 Eukaryotic Microbes (or MICR2252 Eukaryotic Micro-organisms)
+Ecology Majors must do this course in Semester 2

‘This course is offered in both semesters but it is recommended that Ecology Majors take this course in Semester 2.

A student wishing an Ecology Major with a marine-focus may select ENSC2000 Oceanography and ECOL 3460 Biology and Ecology of Coral Reefs. A student wishing a more terrestrial focus to their Ecology Major may select ECOL3462 Behaviour: An Evolutionary Approach and ECOL 3463 Tropical Crop Ecology. The Ecology offerings are completed by two further compulsory courses; one which exposes students to the impacts of humankind on biodiversity (ECOL3461 Ecology of a Changing Planet) and one which develops methodological and analytical skills (ECOL3100 Statistics for Ecologists).

‘Students following this Major who have passed BIOL1010 Basic Skills for Biologists cannot take BIOL2373 Skills for Biologists but must substitute this course with any BIOC/BIOL/ECOL/MICR level 2 or 3 course.
MINOR IN ECOLOGY [Fifteen (15) Credits]: Course Descriptions

ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
ECOL3461 Ecology of a Changing Planet

AND Three (3) credits from the following:
ECOL3100 Statistics for Ecologists
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3463 Tropical Crop Ecology
MAJOR IN MICROBIOLOGY: Course Descriptions

LEVEL I

LEVEL I (12 Credits)
- BIOC1015 Introduction to Biochemistry
- BIOL1020 Diversity of Life I
- BIOL1025 Diversity of Life II
- BIOL1030 Introduction to Genetics

LEVEL II and III (30 Credits)
Eighteen (18) Credits
- BIOC2365 Primary Metabolism
- BIOC2371 Molecular Techniques
- BIOL2373 Skills for Biologists
- MICR2260 Essential Microbiology
- MICR2261 Eukaryotic Microbes
- MICR2262 Methods in Microbiology

AND Twelve (12) Credits from the following:
- BIOL3025 Molecular Plant Pathology
- MICR2900 Microbiology Exchange Elective
- MICR3265 Microbiology of Food
- MICR3266 Ecology of Microorganisms
- MICR3267 Essential Virology
- MICR3268 Microbial Pathogenesis
- MICR3990 Microbiology Project (6 credits)
- BIOL2166 Advanced Genetics I
- HESC3003 Environmental Health
- BIOC3260 Principles of Biotechnology
- BIOC2370 Cell Signals
- PHIL3120 Biomedical Ethics

1 This course is offered in both semesters but it is recommended that Microbiology Majors take this course in Semester 1.

2 No more than two of these elective courses can be used for the Microbiology major.

3 In order to avoid a clash between BIOC2370 and MICR3265 these two electives cannot be taken in the same year.

MINOR IN MICROBIOLOGY [Fifteen (15) Credits]: Course Descriptions

Compulsory:
- MICR2260 Essential Microbiology

AND

Twelve (12) Credits from the following:

Level II courses [Currently]:
- MICR2261 Eukaryotic Microbes
- MICR2262 Methods in Microbiology
- MICR2900 Microbiology Exchange Elective

Level III courses [Currently]:
- MICR3265 Microbiology of Food
- MICR3266 Ecology of Microorganisms
- MICR3267 Essential Virology
- MICR3268 Microbial Pathogenesis
- BIOL3025 Molecular Plant Pathology
CHEMICAL SCIENCES
The Department of Biological & Chemical Sciences offers a Single Major, Double Major and Minor in Chemistry.

MAJOR IN CHEMISTRY: Course Descriptions

LEVEL I (12 Credits)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVELS II/III

LEVEL II (18 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

LEVEL III (12 Credits)
CHEM3625 Laboratory Methods in Chemistry III
AND Six (6) Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Three (3) Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology*

*Students wishing to pursue this elective should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

MINOR IN CHEMISTRY (Fifteen [15] Credits): Course Descriptions

CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
DOUBLE MAJOR IN CHEMISTRY: Course Descriptions

LEVEL I (12 Credits)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVEL II/III

LEVEL II (18 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

LEVEL III
CHEM3625 Laboratory Methods in Chemistry III
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Thirty (30) credits from:
CHEM2725 Chemistry of the Environment
CHEM2513 Fundamentals of Teaching Chemistry
CHEM3635 Biological Inorganic Chemistry
CHEM3218 Environmental Chemistry and Toxicology
CHEM3630 Methods in Instrumental Analysis
CHEM3800 Nanostructures and Supramolecular Chemistry
CHEM 3955 Research Project in Chemistry (6 Credits)
CHEM3990 Professional Placement for Chemists
CHEM3992 Special Topics in Physical Chemistry
BIOC2365 Primary Metabolism OR ENSC2000 Essentials of Oceanography* OR ENSC2003 Sustainable Energy Systems

*Students wishing to pursue this elective should ensure that they have the relevant Level 1 prerequisite courses: METE1110 Introduction to Ocean and Climate OR ERSC1000 Earth and its Environment OR METE1200 Oceans and Climate.
Equivalences Between Old and New Chemistry Courses for the Purpose of Fulfilling Major and Minor Requirements

<table>
<thead>
<tr>
<th>OLD COURSE</th>
<th>NEW COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1010 Fundamentals of Chemistry</td>
<td>No Equivalent</td>
</tr>
<tr>
<td>CHEM1020 Introductory Chemistry</td>
<td>No Equivalent</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>CHEM1110 Introduction to Organic Chemistry</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>CHEM1120 Introduction to Physical Chemistry</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>CHEM1125 Introduction to Experimental Chemistry</td>
</tr>
<tr>
<td>CHEM1130 Introduction to Inorganic Chemistry</td>
<td>CHEM2715 Laboratory Methods in Chemistry I</td>
</tr>
<tr>
<td>CHEM2010 Practical Chemistry I</td>
<td>CHEM2720 Laboratory Methods in Chemistry II</td>
</tr>
<tr>
<td>CHEM2020 Practical Chemistry II</td>
<td>CHEM2700 Intermediate Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM2100 Inorganic Chemistry I</td>
<td>CHEM2705 Intermediate Organic Chemistry</td>
</tr>
<tr>
<td>CHEM2200 Organic Chemistry I</td>
<td>CHEM2710 Intermediate Physical Chemistry</td>
</tr>
<tr>
<td>CHEM2300 Physical Chemistry I</td>
<td>CHEM2730 Quantitative Chemical Analysis</td>
</tr>
<tr>
<td>CHEM2400 Analytical Chemistry I</td>
<td>CHEM2725 Chemistry of the Environment</td>
</tr>
<tr>
<td>CHEM2515 Environmental Chemistry</td>
<td>CHEM2513 Fundamentals of Teaching Chemistry</td>
</tr>
<tr>
<td>CHEM3100 Inorganic Chemistry II</td>
<td>CHEM3167 Advanced Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM3200 Organic Chemistry II</td>
<td>CHEM3175 Advanced Organic Chemistry</td>
</tr>
<tr>
<td>CHEM3300 Physical Chemistry II</td>
<td>CHEM3620 Advanced Physical Chemistry</td>
</tr>
<tr>
<td>CHEM3135 Bioinorganic Chemistry</td>
<td>CHEM3635 Biological Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM3210 Bioorganic and Medicinal Chemistry</td>
<td>No Equivalent</td>
</tr>
<tr>
<td>CHEM3415 Analytical Chemistry III</td>
<td>CHEM3630 Methods in Instrumental Analysis</td>
</tr>
<tr>
<td>CHEM3500 Chemistry Project</td>
<td>CHEM3950 Basic Project in Chemistry</td>
</tr>
<tr>
<td>CHEM3505 Chemistry Research Project</td>
<td>CHEM3955 Research Project in Chemistry</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>CHEM3218 Environmental Chemistry and Toxicology</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>CHEM3800 Nanostructures and Supramolecular</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>Chemistry</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>CHEM3990 Professional Placement for Chemists</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>CHEM3992 Special Topics in Physical Chemistry</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL SCIENCE
The Department of Biological & Chemical Sciences offers a Single Major and Minor in Environmental Science. Only the Biology, Ecology, Chemistry and Meteorology Major may be combined with the Environmental Science Major or Minor. Students wishing to combine Environmental Science Major with a Major of another discipline must seek the approval of the Dean and are advised that timetable clashes of courses may make it impossible to complete such degrees in the minimum 3 year period.

MAJOR IN ENVIRONMENTAL SCIENCE: [Course Descriptions]

LEVEL I (6 Credits)
METE1110 Introduction to Oceans and Climate
OR
ENSC1000 Earth and its Environment
AND
ENSC1001 Introduction to Physical Geology: Dynamic Earth

LEVEL II
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate

AND 21 Credits from Environmental Science Electives Courses:

LEVEL II
ENSC2003 Sustainable Energy Systems
ECOL2461 Caribbean Island Biodiversity
ECOL2460 Essentials of Ecology
CHEM2725 Chemistry of the Environment*

Level III
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
METE35XX Climate, Biosphere and Ecosystems
CHEM3218 Environmental Chemistry and Toxicology
PHIL3110 Environmental Ethics**
HESC3003 Environmental Health**
LAW3450 Caribbean Environmental Law**
LAW3460– International Environmental Law**
ENSC3020 Case Study in Environmental Science***
ENSC3900 Research Project in Environmental Science

*Requires CHEM1125 Introduction to Experimental Chemistry
** No Pre-Requisites
*** Could be run in Semesters I, II or Summer and need approval from Lecturer
MINOR IN ENVIRONMENTAL SCIENCE: [Course Descriptions](#)

LEVEL I (6 Credits)

METE1110 Introduction to Oceans and Climate
OR
ENSC1000 Earth and its Environment
AND
ENSC1001 Introduction to Physical Geology: Dynamic Earth

AND Fifteen (15) credits from the following:

LEVEL II

ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate
ENSC2003 Sustainable Energy Systems

LEVEL III

ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3900 Research Project in Environmental Science
PROGRAMME STRUCTURE

BIOLOGICAL SCIENCES; CHEMICAL SCIENCES; ENVIRONMENTAL SCIENCES

BSc BIOCHEMISTRY:

LEVEL I - (24 CREDITS)
- BIOC1015 Introduction to Biochemistry
- BIOL1020 Diversity of Life I
- BIOL1025 Diversity of Life II
- BIOL1030 Introduction to Genetics
- CHEM1110 Introduction to Organic Chemistry
- CHEM1120 Introduction to Physical Chemistry
- CHEM1125 Introduction to Experimental Chemistry
- CHEM1130 Introduction to Inorganic Chemistry

LEVELS II & III (60 CREDITS)

LEVEL II (12 Credits)
- BIOL2373 Skills for Biologists
- BIOC2371 Molecular Techniques
- BIOC2365 Primary Metabolism
- BIOC2366 Protein Biochemistry

AND 3 Credits from:
- BIOL2166 Advanced Genetics I
- BIOL3025 Molecular Plant Pathology
- CHEM3635 Biological Inorganic Chemistry

LEVEL III - (3 Credits)
- BIOC3265 Principles of Bioinformatics

AND 12 Credits from:
- BIOC2900 Biochemistry Exchange Elective
- BIOC3370 Basis of Human Disease
- BIOC3260 Principles of Biotechnology
- BIOC3261 Mitochondrial Bioenergetics
- BIOC3990 Biochemistry Project

AND 30 Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
- FOUN1006 Exposition For Academic Purposes
- FOUN1008 An Introduction to Professional Writing

AND
- FOUN 1101 Caribbean Civilization
- FOUN1301 Law, Economy, Governance and Society

*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc BIOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

AND 3 Level I Credits from FST Courses
AND 9 Level I credits from any Faculty

LEVELS II & III (60 CREDITS)

BOTH courses (6 Credits):

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists

AND Two courses (6 Credits) from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essential Microbiology

AND Two courses (6 Credits) from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) credits from Biological Sciences Elective Courses:

Level III BIOC/BIOL/ECOL/MICR courses

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES

FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

AND Six (6) Credits from Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses
BSc DOUBLE MAJOR IN BIOLOGICAL SCIENCES

LEVEL I (24 CREDITS)
- BIOC1015 Introduction to Biochemistry
- BIOL1020 Diversity of Life I
- BIOL1025 Diversity of Life II
- BIOL1030 Introduction to Genetics

AND 3 Level I Credits from FST Courses
AND 9 Level I credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (21 credits):
- BIOC2365 Primary Metabolism
- BIOC2371 Molecular Techniques
- BIOL2370 Flowering Plant Physiology
- BIOL2371 Ecophysiology of Animals
- BIOL2373 Skills for Biologists
- ECOL2460 Essentials of Ecology
- MICR2260 Essential Microbiology

AND ONE of the following (6 Credits):
- BIOC3990 Biochemistry Project
- BIOL3990 Biology Project
- ECOL3990 Ecology Project
- MICR3990 Microbiology Project
- BIOL3901 Multidisciplinary Project

AND 15 credits from Biological Sciences Elective Courses:
- Level II BIOC/BIOL/ECOL/MICR courses
- Level III BIOC/BIOL/ECOL/MICR courses

AND 18 credits from Biological Sciences Elective Courses:
- Level III BIOC/BIOL/ECOL/MICR courses

AND 9 CREDITS: FOUNDATION COURSES
- FOUN1006 Exposition For Academic Purposes
OR
- FOUN1008 An Introduction to Professional Writing

AND
- *FOUN 1101 Caribbean Civilization
- *FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ECOLOGY

LEVEL I (24 CREDITS)
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

AND 3 Level I Credits from FST Courses
AND 9 Level I credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (12 Credits)
BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota

AND Six (6) Credits from:
ECOL3461 Ecology of a Changing Planet
ECOL3100 Statistics for Ecologists

AND Twelve (12) Credits from:
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3463 Tropical Crop Ecology
ECOL3462 Behaviour: an Evolutionary Approach
ECOL3990 Ecology Project (6 credits)

AND/OR
ENSC2000 Essentials of Oceanography
MICR3266 Ecology of Microorganisms
BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc MICROBIOLOGY

LEVEL I (24 CREDITS)
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

AND 3 Level I Credits from FST Courses
AND 9 Level I credits from any Faculty

LEVELS II and III (60 CREDITS)

LEVEL II (18 Credits)
BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology

LEVEL III

AND Twelve (12) Credits from:
BIOC2370 Cell Signals***
BIOL2166 Advanced Genetics I***
BIOL3025 Molecular Plant Pathology
MICR2900 Microbiology Exchange Elective**
BIOC3260 Principles of Biotechnology***
HESC3003 Environmental Health***
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis
MICR3990 Microbiology Project (6 credits)
PHIL3120 Biomedical Ethics***

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Substitute Exchange Course
***No more than two of these elective courses can be used for the Microbiology major.
BSc CHEMISTRY

LEVEL I (24 CREDITS)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

AND 3 Level I Credits from FST Courses
AND 9 Level I credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (18 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

LEVEL III (3 Credits)
CHEM3625 Laboratory Methods in Chemistry III

AND 6 Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND 3 Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSC CHEMISTRY (DOUBLE)

LEVEL I (24 CREDITS)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

AND 3 Level I Credits from FST Courses
AND 9 Level I credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (18 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

LEVEL III (12 Credits)
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry
CHEM3625 Laboratory Methods in Chemistry III

AND Thirty (30) credits from:
CHEM2513 Fundamentals of Teaching Chemistry
CHEM2725 Chemistry of the Environment
CHEM3630 Methods in Instrumental Analysis
CHEM3635 Biological Inorganic Chemistry
CHEM3218 Environmental Chemistry and Toxicology
CHEM3800 Nanostructures and Supramolecular Chemistry
CHEM3955 Research Project in Chemistry (6 cr)
CHEM3990 Professional Placement for Chemists**
CHEM3992 Special Topics in Physical Chemistry

BIOC2365 Primary Metabolism
OR ENSC2000 Essentials of Oceanography***
OR ENSC2003 Sustainable Energy Systems

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Offered in summer only.

***Students wishing to pursue this elective should ensure that they have the relevant Level I prerequisite courses:
METE1110 Introduction to Ocean and Climate
OR ERSC1000 Earth and its Environment
OR METE1200 Oceans and Climate
BSC BIOCHEMISTRY AND CHEMISTRY

LEVEL I (24 CREDITS)
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVEL II & III (60 CREDITS)

LEVEL II (30 Credits)
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

AND Three (3) Credits from:
BIOL2166 Advanced Genetics I
BIOC2370 Cell Signals

LEVEL III (12 Credits)
BIOC3265 Principles of Bioinformatics
CHEM3625 Laboratory Methods in Chemistry III

AND Six (6) Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Twelve (12) Credits from:
BIOC2900 Biochemistry Exchange Elective
BIOC3370 Basis of Human Disease
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3990 Biochemistry Project
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

AND Three (3) Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.
BSc BIOLOGY AND CHEMISTRY

LEVEL I (24 CREDITS)
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVELS II & III (60 CREDITS)

LEVEL II (42 Credits)
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
BIOC2365 Primary Metabolism
MICR2260 Essential Microbiology
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

AND 6 Credits from Biological Sciences Elective Courses:
Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (18 Credits)
CHEM3625 Laboratory Methods in Chemistry III

AND 6 Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND 6 Credits from Biological Sciences Elective Courses:
Level III BIOC/BIOL/ECOL/MICR courses

AND 3 Credits from:
CHEM3630 Methods in instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

***These courses are best taken in Final Year.
BSc ENVIRONMENTAL SCIENCE

LEVEL I (24 CREDITS)
METE1110 Introduction to Oceans and Climate
OR
ENSC1000 Earth and its Environment

AND
ENSC1001 Introduction to Physical Geology: Dynamic Earth

AND 6 Level I Credits from FST Courses
AND 12 Level I credits from any Faculty

LEVELS II & III (60 CREDITS):

Level II (9 Credits)
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate

AND 21 Credits from Environmental Science Electives Courses

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc BIOLOGY AND ENVIRONMENTAL SCIENCE

LEVEL I (24 CREDITS)
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
METE1110 Introduction to Oceans and Climate

OR
ENSC1000 Earth and its Environment

AND 6 Level I credits from any Faculty

LEVELS II & III (60 CREDITS)

Level II (15 Credits)
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate

AND Two courses (6 Credits) from:
BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essential Microbiology

AND Two courses (6 Credits) from:
BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Biological Sciences Elective Courses:
Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

AND 21 Credits from Environmental Science Elective Courses

AND Six (6) credits from Biological Sciences Elective Courses:
Level III BIOC/BIOL/ECOL/MICR courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes

OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc CHEMISTRY AND ENVIRONMENTAL SCIENCE

LEVEL I (24 CREDITS)
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
METE1110 Introduction to Oceans and Climate
OR
ENSC1000 Earth and its Environment
AND
ENSC1001 Introduction to Physical Geology: Dynamic Earth
AND
6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

Level II (27 Credits)
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate

LEVEL III (12 Credits)
CHEM3625 Laboratory Methods in Chemistry III

AND 6 Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND 3 Credits from:
CHEM3990 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

AND 21 Credits from Levels II/III Environmental Science Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course:
CHEM2725 Chemistry of the Environment.
BSc ECOLOGY AND ENVIRONMENTAL SCIENCE

LEVEL I (24 CREDITS)
BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
METE1110 Introduction to Oceans and Climate
OR
ENSC1000 Earth and its Environment

AND
ENSC1001 Introduction to Physical Geology: Dynamic Earth

AND
6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

Level II (21 Credits)
BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate

AND 21 Credits from Levels II/III Environmental Science Elective Courses

AND Six (6) Credits from:
ECOL3461 Ecology of a Changing Planet
ECOL3100 Statistics for Ecologists

AND Twelve (12) Credits from:
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3463 Tropical Crop Ecology
ECOL3462 Behaviour: an Evolutionary Approach
ECOL3990 Ecology Project (6 credits)

AND/OR
MICR3266 Ecology of Microorganisms
BIOC2371 Molecular Techniques
BIOC2372 Plants for Caribbean Landscapes

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ENVIRONMENTAL SCIENCE AND METEOROLOGY

LEVEL I (24 CREDITS)
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B
ENSC1001 Introduction to Physical Geology: Dynamic Earth

AND 3 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

Level II (26 Credits)
ENSC2000 Essentials of Oceanography
ENSC2001 Introduction to the Earth Life System
ENSC2002 Earth’s Climate
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2100 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 – Mathematical Methods in Physics I

LEVEL III (12 Credits)
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#

AND 21 Credits from Levels II/III Environmental Science Elective Courses

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere, and Ecosystems

OR 4 Credits from:
METE3400 Weather Radar and Satellites#

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

#4 Credit Courses
All incoming students registered to take courses in the Department of Biological and Chemical Sciences must attend a Safety Seminar usually held during registration week. Students taking laboratory courses in this Department will only be allowed to perform experiments if dressed in an appropriate lab coat, lab goggles and enclosed shoes. Some exceptions may be made in the wearing of safety goggles for lab procedures where there is no risk of eye injury (eg. microscope use).

BIOLOGICAL SCIENCE COURSES

PRELIMINARY BIOLOGICAL SCIENCE COURSES

BIOLO051 - BIOLOGY I (6 Credits)

Pre-requisite: None

Teaching: Three lectures, one tutorial and three hours of practicals per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination (3 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>Theory: In-course assessments</td>
<td>20%</td>
</tr>
<tr>
<td>Practical: Exercises and reports</td>
<td>20%</td>
</tr>
</tbody>
</table>

BIOLO052 - BIOLOGY II (6 Credits)

Pre-requisite: None

Teaching: Three lectures, one tutorial and three hours of practicals per week.

Method of Examination:

Theory:
- Final Examination (3 hours) 60%
- In-course assessments 20%
- Exercises and reports 20%

LEVEL I BIOLOGICAL SCIENCE COURSES

BIOC1015 - INTRODUCTION TO BIOCHEMISTRY (3 Credits)

Pre-requisite: CAPE Chemistry Unit 1 (or CHEM0615) and CAPE Chemistry Unit 2 (or CHEM0625) or an approved equivalent

Anti-requisite: BIOC1351 Introductory Biochemistry

Teaching: 20 lectures (1h each), 6 tutorials (1h each) and 6 practical sessions (3h each).

Method of Examination:
- Theory: Final Examination (2 hours) 50%
- Theory: In-course tests and assignments 25%
- Practical reports 25%

BIOL1020 - DIVERSITY OF LIFE I (3 Credits)

Pre-requisite: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052)

OR

CAPE Environmental Science Units 1 & 2 and CSEC Biology

Anti-requisite: BIOL1051 Biodiversity I

Syllabus:
- **Evolution:** Evolutionary theories, mechanisms. The fossil record. **Ecology:** Introduction to ecology. Major terrestrial and aquatic ecosystems. Trophic structure, energy flow and nutrient cycling in ecosystems. The biodiversity concept. Two-species interactions.

Teaching: 24 lectures (1h each) and 8 practical sessions (3h each).

Method of Examination:
- Theory: final examination (2 hours) 50%
- Theory: in-course test(s) 10%
- Practical: reports, quizzes 30%
- Practical: final practical test 10%

BIOL1025 - DIVERSITY OF LIFE II (3 Credits)

Pre-requisite: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052)

OR

CAPE Environmental Science Units I & 2 and CSEC Biology

Anti-requisite: BIOL1052 Biodiversity II

Teaching: 24 lectures (1h each) and 12 practical sessions (2 h each).

Method of Examination:

Theory: Final Examination (3 hours)	50%
Theory: In-course tests	10%
Practical: quizzes, lab reports, and lab test	40%

BIOL1030 - INTRODUCTION TO GENETICS (3 Credits)

Pre-requisite: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052)

OR

CAPE Environmental Science Units 1 & 2 and CSEC Biology

Anti-requisite: BIOL1151 Introductory Genetics

Teaching: 18 lectures (1h each), 6 tutorials (1h each) and 8 practical sessions (3h each).

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course test(s) and assignments	25%
Practical: Quizzes, exercises and reports	25%
LEVEL II BIOLOGICAL SCIENCE COURSES

BIOC2365 PRIMARY METABOLISM (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry (or BIOC1351 Introductory Biochemistry)

Restrictions: Not to be taken by persons who have passed BIOC2351 Biochemistry I

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

<table>
<thead>
<tr>
<th></th>
<th>Theory: Final Examination (2 hours)</th>
<th>Theory: In-course Test(s)/Assignment(s)</th>
<th>Practical:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
<td>25%</td>
<td>25%</td>
</tr>
</tbody>
</table>

BIOC2366 - PROTEIN BIOCHEMISTRY (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry (or BIOC1351 Introductory Biochemistry)

Restrictions: Not to be taken by persons who have passed BIOC2352 Biochemistry II

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:
Theory: Final Examination (2 hours)
Theory: In-course Test(s)/Assignment(s)
Practical:

50%
25%
25%

BIOC2370 - CELL SIGNALS (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry (or BIOC1351 Introductory Biochemistry)

Restrictions: Not to be taken by persons who have passed BIOC3053 Cell Signalling

Syllabus: This course provides a comprehensive view of how eukaryotic cells communicate within themselves and between each other normally and in a diseased state. Hormonal signaling in animal systems will be examined, in addition to the regulatory mechanisms used to control these hormones. Animal examples (and selected examples of organisms) of hormonal signaling will be used to understand the biochemical modes of action of these chemical messengers.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

<table>
<thead>
<tr>
<th>Theory: Final Examination (2 hours)</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>25%</td>
</tr>
<tr>
<td>Practical:</td>
<td>25%</td>
</tr>
</tbody>
</table>

BIOC2371 - MOLECULAR TECHNIQUES (3 Credits)

Pre-requisites: BIOL1030 Introduction to Genetics (or BIOL1151 Introductory Genetics)

Restrictions: Not to be taken by persons who have passed BIOL2152 General Molecular Biology

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

<table>
<thead>
<tr>
<th>Theory: Final Examination (2 hours)</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>25%</td>
</tr>
<tr>
<td>Practical:</td>
<td>25%</td>
</tr>
</tbody>
</table>
BIOC2900 - BIOCHEMISTRY EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Biochemistry which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: The teaching methodologies will be determined by the host institution.

Method of Examination:
The course assessment methods will be determined by the host institution.

BIOL2166 - ADVANCED GENETICS I (3 Credits)

Pre-requisites: BIOL1030 – Introduction to Genetics AND BIOC1015 Introduction to Biochemistry

Restrictions: Not to be taken by persons who have passed BIOL2151 Genetics I

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practical

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination</td>
<td>50%</td>
</tr>
<tr>
<td>Theory: In-course Test(s)/</td>
<td>25%</td>
</tr>
<tr>
<td>Assignment(s)</td>
<td></td>
</tr>
<tr>
<td>Practical: Quizzes,</td>
<td>25%</td>
</tr>
<tr>
<td>exercises and reports</td>
<td></td>
</tr>
</tbody>
</table>
BIOL2370 - FLOWERING PLANT PHYSIOLOGY (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I AND BIOC1015 Introduction to Biochemistry

Restrictions: Not to be taken by persons who have passed BIOL2053 Physiology of Plants & Animals or BIOL3053 Developmental Physiology.

Syllabus: **Functional anatomy:** plant cell types, tissues, primary and secondary growth. **Water movement:** water potential, xylem structure and function. **Mineral nutrition:** nutrient classification, ion movement. **Gas exchange:** guard cell structure and function. **Photosynthesis:** plastids, pigments, light reactions, C3/C4/CAM comparison. **Translocation:** phloem structure & function. **Major stages in plant development:** germination to senescence. **Plant movements:** nutation, tropisms and nasties. **Phytohormones:** major classes, roles in development. Practical experimental design and data analysis.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practical.

Method of Examination:

- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 20%
- Practical: 30%

BIOL2371 - ECOPHYSIOLOGY OF ANIMALS (3 Credits)

Pre-requisites: BIOL1025 Diversity of Life II

Restrictions: Not to be taken by persons who have passed BIOL2053 Physiology of Plants & Animals or BIOL3053 Developmental Physiology.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 20%
- Practical: Laboratory/Field work 30%
BIOL2372 - PLANTS FOR CARIBBEAN LANDSCAPES (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I

Restrictions: Not to be taken by persons who have passed BIOL2058 Tropical Ornamental Plants

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials; twenty-four (24) hours of practical/field work.

Method of Examination:

<table>
<thead>
<tr>
<th>Theory: Final Examination (2 hours)</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>10%</td>
</tr>
<tr>
<td>Practical: Laboratory/Field work</td>
<td>50%</td>
</tr>
</tbody>
</table>

BIOL2373 - SKILLS FOR BIOLOGISTS (3 Credits)

Pre-requisites: 15 credits of level-1 courses including 6 credits from Level 1 BIOC/BIOL courses. Restricted to students majoring or minoring in Biology, Ecology, Microbiology or Biochemistry.

Restrictions: Not to be taken by persons who have passed BIOL1010 Basic Skills for Biologists.

Syllabus: **Scientific enquiry, data handling and simple statistics:** The scientific method. Developing a research plan. Simple experimental design. Categorical and continuous variables. Mode, median, mean, range, quartiles, variance and standard deviation. Hypothesis testing using p-values and confidence intervals. Frequency analysis (chi-square, odds ratio, relative risks). Separation of groups: Parametric tests (t-tests, ANOVA and LSD post-hoc test). Correlation analysis: Parametric (Pearson), Non-parametric (Spearman). Regression analysis (simple linear regression, multiple linear regression). Use of computer software tools for data analysis and presentation of results e.g. EXCEL, Genstat, R, SPSS. Data handling and graph preparation in Excel. Excel applications useful for descriptive statistics.

Dealing with numbers and simple mathematical relationships: Scientific notation, decimal places, significant figures. Simple calculations with number in scientific notation. Precision and accuracy. SI units and prefixes. The rules of exponents and logarithms. Simple calculations involving these. **Scientific writing:** The format of scientific reporting - Abstract, Introduction, Material and Methods, Results, Discussion, References. Finding relevant information on a topic using electronic and non-electronic sources. Citing and referencing sources. Understanding plagiarism. Common knowledge. Quotations. Use of text matching software, e.g. Turnitin.
Teaching: Twenty-four (24) hours of interactive lectures/tutorials AND Twelve (12) hours tutorials/assessments.

Method of Examination:
Coursework 100%

BIOL2463 - SUSTAINABLE LAND USE (3 Credits)
Pre-requisite: Permission of the Department

Restrictions: Not to be taken by persons who have passed BIOL2050 Sustainability & Land Use

Teaching: The course will be taught intensively over four weeks in the summer, typically 3 days per week as part of the McGill-UWI BITS Programme. Lectures will be given during each of the morning sessions and labs/field trips will be held in the afternoon sessions.

Method of Examination:
Coursework 40%
Final examination (2 hours) 60%

BIOL2465 - TROPICAL HORTICULTURE (3 Credits)
Pre-requisites: BIOL1020 Diversity of Life I AND BIOL1025 Diversity of Life II

Restrictions: Not to be taken by persons who have passed ECOL2055 Horticulture

Teaching: Twenty-four (24) hours of lectures and twenty-four (24) hours of laboratory work /field trips.
Method of Examination:

<table>
<thead>
<tr>
<th>Coursework (incl. field work, practicals, quizzes)</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

BIOL2466 - TROPICAL ENERGY AND BIOPROCESSING (3 Credits)

Pre-requisite: Permission of the Department

Restrictions: Not to be taken by persons who have passed BIOL2055 Bioprocessing & Tropical Energy.

Syllabus: Tropical energy issues and approaches – Energy vs food debate; Introduction to the scope of bioprocessing industries – definitions, technology and products; Basic biofuel processing concepts; Economics of bioenergy, including economics of conservation and biofuels on reduction of CO₂ generation; Basic principles of industrial utilization of raw food materials for production of bio-products. Characterisation of raw material and products for biotechnological conversion; Utilisation of food residues for the production of bio-products including sugars, antibiotics, amino acids, peptides; Bioprocessing for production of drug therapeutics, nutraceuticals and functional foods.

Teaching: The course will be taught intensively over four weeks in the summer, typically 3 days per week as part of the McGill-UWI BITS Programme. Lectures will be given during each of the morning sessions and labs/field trips will be held in the afternoon sessions.

Method of Examination:

<table>
<thead>
<tr>
<th>Coursework</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>

BIOL2900 - BIOLOGY EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course.

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Biology which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course.

Method of Examination:

Depends on Institution offering course.
ECOL2460 - ESSENTIALS OF ECOLOGY (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I (or BIOL1051 Biodiversity I) AND BIOL1025 Diversity of Life II (or Biodiversity II)

Restrictions: Not to be taken by persons who have passed ECOL2051 Population Ecology

Syllabus: **Individuals:** Coping with environmental variation. **Populations:** Life history, population distribution and abundance and population dynamics. **Interactions among organisms:** Competition, predation and herbivory, parasitism, mutualism and commensalism. **Communities:** The nature of communities, changes in communities and species diversity in communities. **Ecosystems:** Production, energy flow and food webs, nutrient supply and cycling.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical:	30%

ECOL2461 - CARIBBEAN ISLAND BIODIVERSITY (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I (or BIOL1051 Biodiversity I) AND BIOL1025 Diversity of Life II (or BIOL1052 Biodiversity II)

Restrictions: Not to be taken by persons who have passed ECOL2453 Caribbean Island Biogeography

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)	10%
Practical: Field journal/assignments	40%
ECOL2462 - MARINE BIOTA (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology (or ECOL2451 Population Ecology)

Restrictions: Not to be taken by persons who have passed ECOL2454 Marine Biology

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 20%
- Practical: Laboratory/Field Work 30%

ECOL2900 - ECOLOGY EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course.

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Ecology which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course

Method of Examination:

- Depends on Institution offering course

MICR2260 - ESSENTIAL MICROBIOLOGY (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I (or BIOL1051 Biodiversity I) AND BIOC1015 Introduction to Biochemistry (or BIOC1351 Introductory Biochemistry)

Restrictions: Not to be taken by persons who have passed MICR2251 General Microbiology

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 20%
Practical Coursework: Reports, quizzes, tests 30%

MICR2261 - EUKARYOTIC MICROBES (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I (or BIOL1051 Biodiversity I) AND BIOC1015 Introduction to Biochemistry (or BIOC1351 Introductory Biochemistry)

Restrictions: Not to be taken by persons who have passed MICR2252 Eukaryotic Microorganisms

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials; Twenty-four (24) hours of practical/field work.

Method of Examination:

Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 25%
Practical: Laboratory/Field work 25%

MICR2262 - METHODS IN MICROBIOLOGY (3 Credits)

Pre-requisites: MICR2261 Essential Microbiology (or MICR2251 General Microbiology)

Teaching: Twelve (12) hours of lectures/tutorials; forty-eight (48) hours of practical/field work.

Method of Examination: This will be 100% Coursework

Laboratory assessments/Field Work 80%
Tutorials 20%
MICR2900 - MICROBIOLOGY EXCHANGE ELECTIVE (3 Credits)
Pre-requisites: Depends on Institution offering course

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Microbiology which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course.

Method of Examination:
Depends on Institution offering course.

LEVEL III BIOLOGICAL SCIENCE COURSES

BIOC3260 – PRINCIPLES OF BIOTECHNOLOGY (3 Credits)
Pre-requisite: BIOC2371 Molecular Techniques (or BIOL2152 General Molecular Biology)

Syllabus: Biotechnology applications to medicine, e.g. animal and human cell, tissue and organ culture. Medical/pharmaceutical products of animal cell culture. Biotechnology applications to agriculture e.g. plant cell and tissue culture. Plant based production of biofuels, molecular markers. Applications of biotechnology to environmental solutions e.g., monitoring, and remediation of contaminated soils. New and emerging biotechnologies e.g. RNAi, CRISPR, gene therapy, and synthetic biology among other new techniques.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:
Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 25%
Practical: reports 25%

BIOC3261 - MITOCHONDRIAL BIOENERGETICS (3 Credits)
Pre-requisite: BIOC2365 Primary Metabolism (or BIOC2351 Biochemistry I) AND BIOC2371 Molecular Techniques (or BIOL2152 General Molecular Biology)

BIOC3265 - PRINCIPLES OF BIOINFORMATICS (3 Credits)

Pre-requisite: BIOC2371 Molecular Techniques (or BIOL2152 General Molecular Biology)

Restrictions: Not to be taken by persons who have passed BIOL3152 Bioinformatics

Syllabus: Descriptive terminology in Bioinformatics and basic computer programming; Biological algorithms; Pairwise and Multiple sequence alignments; Global and Local sequence alignment; BLAST and FASTA searches; Secondary structure analyses in molecular data e.g. domain and motif searches; Introduction to key software and databases including MEGA, MEME, NCBI, EBI, and DDBJ databases; Phylogenetic and basic cluster analysis methods; Genome projects, e.g. the Human genome; Microbiome and cancer genome projects as well as plant genome projects.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 20%
- Practical: reports 30%

BIOC3290 - BIOCHEMISTRY PROJECT (MINORS) (3 Credits)

Pre-requisites: BIOL2373 Skills for Biologists AND 6 credits from Level II BIOC/BIOL/ECOL/MICR courses. Only available to final year students minoring in Biochemistry.

Restrictions: Not to be taken with BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, ECOL3990 Ecology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project or CHEM 3505 Research Project.

Syllabus: Research question. Summary of scientific literature. Collection of data. Analysis of data. Concise report. Poster presentation. Topics that address real Biochemical questions, whether pure or
applied. Research ethics. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project report</td>
<td>60%</td>
</tr>
<tr>
<td>Poster Presentation</td>
<td>25%</td>
</tr>
<tr>
<td>Supervisor assessment</td>
<td>15%</td>
</tr>
</tbody>
</table>

BIOC3370 - BASIS OF HUMAN DISEASE (3 Credits)

Prerequisite: BIOC2371 Molecular Techniques AND BIOC2370 Cell Signals

Restrictions: Not to be taken by persons who have passed BIOC3354 Biochemistry of Human Disease

Syllabus: Characteristics of the selected diseases/syndromes. Overview of the immune system. Endocrine organs and systems relevant to the selected disease states. Mechanisms of hormones and receptors relevant to the selected disease states. Modulation of hormone levels in healthy and in disease states. System regulators and errors contributing to the disease state. Clinical presentation and progression of the selected diseases/symptoms. The linkage of the symptoms with system errors. Overview of diagnostic tools, drugs and therapies. Disease management. Applications of biochemical techniques used in bio-medical research and forensic sciences.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practical.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination</td>
<td>50%</td>
</tr>
<tr>
<td>Theory: In-course Test(s)</td>
<td>25%</td>
</tr>
<tr>
<td>Assignment(s)</td>
<td></td>
</tr>
<tr>
<td>Practical: reports</td>
<td>25%</td>
</tr>
</tbody>
</table>

BIOC3990 - BIOCHEMISTRY PROJECT (6 Credits)

Pre-requisites: BIOL2373 Skills for Biologists AND 12 credits from Level II BIOC/BIOL/ECOL/MICR courses. Only available to final year students majoring in Biochemistry.

Restrictions: Not to be taken with BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, ECOL3990 Ecology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project.
Syllabus: Research question. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Report and illustrated summary. Oral presentation. Topics that address real Biochemical questions, whether pure or applied. Research ethics. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

- Project report 70%
- Seminar 15%
- Supervisor assessment 15%
BIOL3501 – PROFESSIONAL PLACEMENT FOR BIOLOGISTS (3 Credits)

Pre-requisites: BIOL2373 Skills for Biologists and 12 credits from Level II BIOC/BIOL/ECOL/MICR courses

Restrictions: Not to be taken with CHEM3990 Professional placement for Chemists

Syllabus: The course provides a formal internship of 160 hours duration at a relevant private sector, public sector or non-Governmental organisation during which students undertake agreed upon activities relevant to his/her studies in the Biological Sciences. Students will work under the guidance of a workplace supervisor as well as an on-campus supervisor and will submit a report and make a presentation within the Department at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that will be useful in any future employment sphere.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placement Report</td>
<td>50%</td>
</tr>
<tr>
<td>Supervisor’s Appraisal</td>
<td>35%</td>
</tr>
<tr>
<td>Oral Presentation</td>
<td>15%</td>
</tr>
</tbody>
</table>

BIOL3025 – MOLECULAR PLANT PATHOLOGY (3 Credits)

Pre-requisites: BIOC2365 Primary Metabolism OR ECOL2460 Essentials of Ecology OR MICR2260 Essential Microbiology AND SIX credits from Level II BIOC, BIOL, ECOL or MICR courses

Restrictions: Not to be taken by persons who have passed BIOL3254 Biochemical Plant Pathology.

Syllabus: This course presents an overview of plant diseases and their impact on agriculture. Emphasis is placed on diseases in tropical agriculture. Central themes in plant disease studies including pathogen infection strategies, molecular and biochemical interactions between pathogen and host, disease resistance, epidemiology, disease management, and molecular disease diagnostics are developed during the course.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination (2 hours)</td>
<td>50%</td>
</tr>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>25%</td>
</tr>
<tr>
<td>Practical: reports</td>
<td>25%</td>
</tr>
</tbody>
</table>
BIOL3901 - MULTIDISCIPLINARY PROJECT (6 Credits)

Pre-requisite: Permission of Department

Restrictions: Not to be taken with BIOC3990 Biochemistry Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, ECOL3990 Ecology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project

Syllabus: A lab and/or field project carried out under the supervision of a member of staff as part of the McGill UWI BITS Programme. Projects will address real-world problems related to food, nutrition or energy at the local, regional or international level. Development of a hypothesis suitable for investigation. Experimental work to support or refute this hypothesis. Analysis and communication of results obtained.

Teaching: Duration of the course is 14 weeks in the summer period, with approximately 2 days per week devoted to individual project work.

Method of Examination:

- Written proposal plus an interim report: 20%
- Final report, illustrated summary, poster and oral presentation: 80%

BIOL3990 - BIOLOGY PROJECT (6 Credits)

Pre-requisites: BIOL2373 Skills for Biologists AND 12 credits from Level II BIOC/BIOL/ECOL/MICR courses.

Restrictions: Not to be taken with BIOL3901 Multidisciplinary Project, BIOC3990 Biochemistry Project, ECOL3990 Ecology Project, MICR3990 Microbiology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project

Syllabus: Elements of scientific research. Research questions. Research ethics. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Project report writing. Oral presentation. Selection of a topic that addresses real biological questions, whether pure or applied. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.
Method of Examination:

<table>
<thead>
<tr>
<th>Examination Type</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project report</td>
<td>70%</td>
</tr>
<tr>
<td>Seminar</td>
<td>15%</td>
</tr>
<tr>
<td>Supervisor assessment</td>
<td>15%</td>
</tr>
</tbody>
</table>

ECOL3100 - STATISTICS FOR ECOLOGISTS (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology

Syllabus:
The statistical background: Probability; permutations; populations and samples; descriptive versus inferential statistics; the normal distribution and confidence intervals; null and alternative hypotheses; alpha and beta error; data types. **The planning stage:** Formulation of ideas; background research; hypothesis formulation; experimental design (e.g. sampling procedures); identification of data needs; identification of relevant statistical tests. Tests for differences (from one to multiple samples), and Tests for linking data. **The recording stage:** configuration of datasets for analysis. **The analysis stage:** Data exploration and visualization; hypothesis testing; selection of parametric versus non-parametric statistical tests; evaluation of model fits. **The reporting stage:** Choice and production of graphics and summary statistic outputs.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

<table>
<thead>
<tr>
<th>Examination Type</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>100%</td>
</tr>
<tr>
<td>Theory</td>
<td>30%</td>
</tr>
<tr>
<td>Practical</td>
<td>70%</td>
</tr>
</tbody>
</table>

ECOL3460 - BIOLOGY & ECOLOGY OF CORAL REEFS (3 Credits)

Pre-requisites: ECOL2462 Marine Biota (or ECOL2454 Marine Biology). Students must be able to swim and snorkel competently.

Restrictions: Not to be taken by persons who have passed ECOL3423 Coral reef Ecology

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.
Method of Examination:

<table>
<thead>
<tr>
<th>Coursework: Theory</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework: Practical</td>
<td>30%</td>
</tr>
</tbody>
</table>

ECOL3461 - ECOLOGY OF A CHANGING PLANET (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology or ECOL 2451 Population Ecology

Restrictions: Not to be taken by persons who have passed ECOL3451 Human Ecology & Conservation

Syllabus: Human population growth and migration patterns. Impacts of human colonization on biodiversity in previously uninhabited lands. Impacts of conversion of land to agriculture and increased water extraction on biodiversity. Accidental and deliberate introductions of invasive species and their ecological impacts on native biodiversity. Methods to prevent introduction and/or manage invasive terrestrial and marine species. How cultural value systems affect biodiversity use. The role of overexploitation in species declines and the strategies that have been used in species recovery. Location and Protection of biodiversity hotspots. Observed and predicted impacts of climate change on the biology and ecology of terrestrial and marine biodiversity. Conservation goals for the 21st century.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

<table>
<thead>
<tr>
<th>Final Examination (2 hours)</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>40%</td>
</tr>
</tbody>
</table>

ECOL3462 - BEHAVIOUR: AN EVOLUTIONARY APPROACH (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology or ECOL 2451 Population Ecology

Restrictions: Not to be taken by persons who have passed ECOL3452 Behavioural Ecology

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

<table>
<thead>
<tr>
<th>Final Examination (2 hours)</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>40%</td>
</tr>
</tbody>
</table>
ECOL 3463 - TROPICAL CROP ECOLOGY (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology (or ECOL2451 Population Ecology) AND BIOL1030 Introduction to Genetics (or BIOL1151 Introductory Genetics).

Restrictions: Not to be taken by persons who have passed ECOL3453 Crop Ecology

Syllabus: Introduction: Tropical crop productions systems and agro-ecosystems; Physical and biological environments of crops; Social constraints to crop production; Conventional vs. Alternative agriculture. Crop evolution, distribution, propagation and breeding of tropical crops. Soil factors; Physical and Chemical properties of soil; Root room; tilth, aeration; pH; Salinity; Tolerance mechanisms; Management under tropical conditions. Mineral nutrition; Deficiency/Toxicity effects; Tolerance mechanisms; Mineral balance of plants and plant communities; Management options in the tropics. Radiation distribution in tropical crops; Photosynthesis & bio-productivity; High and low irradiance tolerance; Carbon balance of crops; Management options. Physiological effects of temperature; Heat tolerance; Energy balance and evapotranspiration; Management options (1 lecture). Crops and water; Water injury (drought/flood); Tolerance mechanisms; Water balance of plants and plant communities; Management options in the tropics. Tropical crop diseases; Integrated management. Tropical crop pests; Biological control; Integrated management. Weeds; Integrated management in the tropics. Tropical agroforestry cropping systems. Course Review.

Teaching: Two lectures, one tutorial and three hours of practical per week.

Method of Examination:
Final Examination (2 hours) 60%
Coursework 40%

ECOL3990 - ECOLOGY PROJECT (6 Credits)

Pre-requisites: BIOL2373 Skills for Biologists or BIOL1010 Basic Skills for Biologists AND 12 credits from Level II or III ECOL courses. Students with a GPA of 3.00 or above are preferred.

Restrictions: Not to be taken with BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, BIOC3990 Biochemistry Project, or by persons who have passed BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project

Syllabus: Elements of scientific research. Research questions. Research ethics. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Project report writing. Oral presentation. Selection of a topic that addresses real ecological questions, whether pure or applied. Suggestions for specific topics may be considered from students but final proposed topics must
come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project report</td>
<td>70%</td>
</tr>
<tr>
<td>Seminar</td>
<td>15%</td>
</tr>
<tr>
<td>Supervisor assessment</td>
<td>15%</td>
</tr>
</tbody>
</table>

MICR3265 - MICROBIOLOGY OF FOOD (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology (or MICR2251 General Microbiology)

Restrictions: Not to be taken by persons who have passed MICR3251 Food Microbiology

Teaching: Twenty-four (24) lectures/tutorials and twenty-four (24) hours of practical per semester.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination (2 hours)</td>
<td>50%</td>
</tr>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>20%</td>
</tr>
<tr>
<td>Practical: Laboratory/Field work</td>
<td>30%</td>
</tr>
</tbody>
</table>

MICR3266 - ECOLOGY OF MICROORGANISMS (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology (or MICR2251 General Microbiology), AND MICR2261 Eukaryotic Microbes (or MICR2252 Eukaryotic Micro-organisms)

Restrictions: Not to be taken by persons who have passed MICR3252 Microbial Ecology

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials; Twenty-four (24) hours of practical/field work.
Method of Examination:

Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 15%
Practical: Laboratory/Field work 35%

MICR3267 - ESSENTIAL VIROLOGY (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology (or MICR2251 General Microbiology) AND BIOL1030 Introduction to Genetics (or BIOL1151 Introductory Genetics).

Restrictions: Not to be taken by persons who have passed MICR3253 Biology of Viruses

Teaching: Twenty-four (24) hours of lectures/tutorials; Twenty-four (24) hours of practical.

Method of Examination:

Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 25%
Practical assignment(s) 25%

MICR3268 - MICROBIAL PATHOGENESIS (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology (or MICR2251 General Microbiology) AND BIOL1030 Introduction to Genetics (or BIOL1151 Introductory Genetics).

Restrictions: Not to be taken by persons who have passed MICR3258 Pathogenic Microorganisms

Teaching: Twenty-four (24) hours of lectures/tutorials; Twenty-four (24) hours of practical.
Method of Examination:

- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 35%
- Practical: Assignment(s) 15%

MICR3990 - MICROBIOLOGY PROJECT (6 Credits)

Pre-requisites: MICR2260 Essential Microbiology (or MICR2251 General Microbiology), MICR2262 Methods in Microbiology, BIOL2373 Skills for Biologists AND 9 credits from Level II BIOC/BIOL/ECOL/MICR courses. Only available to final year students majoring in Microbiology.

Restrictions: Not to be taken with BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, ECOL3990 Ecology Project, MICR3990 Microbiology Project, BIOC3990 Biochemistry Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project

Syllabus: Research question. Research ethics. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Report and illustrated summary. Oral presentation. Topics that address real Microbiological questions, whether pure or applied. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

- Project report 70%
- Seminar 15%
- Supervisor assessment 15%

CHEMISTRY COURSES

PRELIMINARY CHEMISTRY COURSES

CHEM0615 - PRELIM CHEMISTRY I (6 Credits)

Pre-requisite: None

Restriction: Not to be taken if student has passed CHEM0615 – Preliminary Chemistry I, CHEM0355 – Preliminary Chemistry A or CAPE Chemistry Unit 1.

Syllabus: This course familiarizes students with the fundamental concepts of chemistry such as the mole concept, chemical equations, atomic structure, periodicity and interactions between molecules. It introduces them to the basic concepts of physical chemistry such as gases, thermochemistry, equilibria, kinetic and electrochemistry. A course of about 26 lectures, associated tutorials and a maximum of 39 hours of

Teaching: Two lectures, one tutorial and three hours of practical work per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination (3 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory Exercises</td>
<td>20%</td>
</tr>
</tbody>
</table>

CHEM0625 - PRELIM CHEMISTRY II (6 Credits)

Pre-requisite: None

Restriction: Not to be taken if student has passed CHEM0625 – Preliminary Chemistry II, CHEM0125 – Preliminary Chemistry B or CAPE Chemistry Unit 2.

Syllabus: A course of about 26 lectures, associated tutorials and a maximum of 39 hours of laboratory work on Organic Chemistry and Analytical Chemistry. This course introduces students to the basic concepts of organic and analytical chemistry as well as familiarizes students with the basic industrial and environmental applications of chemistry. It stands as an alternative to CAPE Chemistry Unit 2 and will be delivered in a face-to-face modality. Structure, formulae and nomenclature of organic compounds. Introduction to reaction mechanisms. Functional groups and their reactions. Analytical techniques and associated calculations. Petroleum industry. Haber & Contact processes. Aluminium industry. Preparation of chlorine. Environmental impact of selected industries and pollutants. Green Chemistry and waste reduction.

Teaching: Two lectures, one tutorial and three hours of practical work per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination (3 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory Exercises</td>
<td>20%</td>
</tr>
</tbody>
</table>
LEVEL I CHEMISTRY COURSES

CHEM1110 - INTRODUCTION TO ORGANIC CHEMISTRY (3 Credits)
Pre-requisite: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Co-requisite: None

Syllabus: This course covers the basic and fundamental principles of organic chemistry and exposes students to the concepts of chemical bonding in organic molecules, functional groups, nomenclature, stereochemistry and reaction mechanisms. Electron pushing formalism will be emphasized in an attempt to discourage rote learning and to allow students to better understand the language of organic chemistry. Students will be expected to apply their knowledge to interpret reactions based on their patterns of reactivity and hence predict and explain unknown reactions.

Teaching: Two one-hour lectures and a one-hour tutorial per week.

Method of Examination:
Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 50%

CHEM1120 - INTRODUCTION TO PHYSICAL CHEMISTRY (3 Credits)
Pre-requisite: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Co-requisite: None

Syllabus: This course seeks to provide students with knowledge of the fundamental principles of physical chemistry with an emphasis on thermodynamics, energetics, chemical kinetics, electrochemistry and the fundamentals of spectroscopy. The aim is to provide 1st year (i.e. fully matriculated) students with a theoretical foundation for the more advanced and specialised 2nd and 3rd year physical chemistry courses.

Teaching: Two one-hour lectures and a one-hour tutorial per week.

Method of Examination:
Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 50%
CHEM1125 - INTRODUCTION TO EXPERIMENTAL CHEMISTRY (3 Credits)
Pre-requisite: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT
Co-requisite: None
Syllabus: This course is a yearlong 3-credit experimental chemistry course with 84 hours of experimental work in which students are exposed to concepts and laboratory skills associated with Organic, Inorganic, Analytical and Physical Chemistry. Students will hone their critical thinking and analytical skills through a series of discussions and experiments designed to improve experimental skills and prepare them for more advanced laboratory techniques.
Teaching: Seven-six (76) hours for practical skills and eight (8) hours for data analysis skill set.
Method of Examination:
Coursework: 100%

CHEM1130 - INTRODUCTION TO INORGANIC CHEMISTRY (3 Credits)
Pre-requisite: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT
Co-requisite: None
Syllabus: This course seeks to equip biological and chemical sciences students with knowledge of the fundamental principles of inorganic chemistry including atomic and molecular structures and properties, the chemistry of the main group and transition elements, including industrial and commercial applications, coordination compounds and the packing arrangements of ionic structures. These areas will be used as the basis for advanced inorganic chemistry courses required for the major/minor in chemistry.
Teaching: Two one-hour lectures and a one-hour tutorial per week.
Method of Examination:
Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 50%
LEVEL II CHEMISTRY COURSES

CHEM2513 – FUNDAMENTALS OF TEACHING CHEMISTRY (3 credits)
Pre-requisite:
CHEM1110 Introduction to Organic Chemistry
CHEM1130 Introduction to Inorganic Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1120 Introduction to Physical Chemistry
OR
CHEM1010 – Fundamentals of Chemistry AND CHEM1020 – Introductory Chemistry

Syllabus:
This course seeks to expose Chemistry students, who are interested in becoming teachers, to the skills of teaching Chemistry/Science, how learning occurs as well as how to overcome some of the barriers to learning. In the process participants will further develop their critical thinking, analytical and communication skills. They will be exposed to best practice relating to scientific literacy, an inquiry based approach to Chemistry/Science as well as various teaching strategies to engage active and hence deep learning. Participants will also engage in lesson planning and microteaching.

Teaching:
Three teaching hours per week.

Method of Examination:
Coursework:
100%

CHEM2700 – INTERMEDIATE INORGANIC CHEMISTRY (3 Credits)
Pre-requisite:
CHEM1125 Introduction to Experimental Chemistry AND CHEM1130 Introduction to Inorganic Chemistry
OR
CHEM1010 Fundamentals of Chemistry AND CHEM1020 Introductory Chemistry

Syllabus:
This course seeks to build on the fundamental Inorganic Chemistry knowledge that the students were exposed to in their first year by, amongst others, introducing the transition metals and their utility in industry related to their chemical and physical properties. The students are also exposed to spectroscopic and magnetochemical analysis used in the characterization of transition metal complexes.

Teaching:
Two lectures and one tutorial per week.

Method of Examination:
Theory: Final Examination (2 hours): 50%
Theory: In-course Test(s)/Assignment(s): 50%
CHEM2705 - INTERMEDIATE ORGANIC CHEMISTRY (3 Credits)
Pre-requisite: CHEM1110 Introduction to Organic Chemistry AND CHEM1125 Introduction to Experimental Chemistry
OR
CHEM1010 Fundamentals of Chemistry AND CHEM1020 Introductory Chemistry

Syllabus: This course introduces students to the utilization of spectroscopic techniques in elucidating the structure of organic molecules, advanced organic stereochemistry, properties of aromatic molecules, electrophilic aromatic substitution, enolate chemistry, and several other reaction classes. They will learn how to predict the expected outcome of reactions, craft reaction mechanisms and determine the structure of organic molecules while reinforcing concepts learnt, and skills cultivated in the first year Organic Chemistry course.

Teaching: Two lectures and one tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 50%

CHEM2710 - INTERMEDIATE PHYSICAL CHEMISTRY (3 Credits)
Pre-requisite: CHEM1120 Introduction to Physical Chemistry AND CHEM1125 Introduction to Experimental Chemistry
OR
CHEM1010 Fundamentals of Chemistry AND CHEM1020 Introductory Chemistry

Syllabus: This course looks at the thermodynamics, adsorption processes at solid surfaces as well as electrochemistry and aims to build on the physical chemistry fundamental knowledge that the students were exposed to in their first year. This course would help to deepen the students' understanding of the microscopic and macroscopic behaviour of matter.

Teaching: Two lectures and one tutorial per week

Method of Examination:

Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 50%
CHEM2715 - LABORATORY METHODS IN CHEMISTRY I (3 credits)

Pre-requisite: CHEM1125 Introduction to Experimental Chemistry

OR

CHEM1010 Fundamentals of Chemistry AND CHEM1020 Introductory Chemistry

Syllabus: A course of seventy-two (72) hours of practical work selected from the disciplines of Analytical Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry.

Teaching: Six hours of practical classes per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Practical work</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
</tbody>
</table>

CHEM2720 - LABORATORY METHODS IN CHEMISTRY II (3 credits)

Pre-requisite: CHEM1125 Introduction to Experimental Chemistry

OR

CHEM1010 Fundamentals of Chemistry AND CHEM1020 Introductory Chemistry

Syllabus: A course of seventy-two (72) hours of practical work selected from the disciplines of Analytical Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry.

Teaching: Six hours of practical classes per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Practical work</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
</tbody>
</table>

CHEM2725 - CHEMISTRY OF THE ENVIRONMENT (3 Credits)

Prerequisites: CHEM1125 Introduction to Experimental Chemistry

OR

CHEM1010 Fundamentals of Chemistry AND CHEM1020 Introductory Chemistry

Restriction: Not to be taken if student has passed CHEM3515 Environmental Chemistry.

Description: An understanding of the fundamental chemical processes in the environment is critical to understanding the world in which we live and our impact on it. Students will develop knowledge
and skills that will allow them to contribute to regional needs related to air, water and soil quality. This course is required for the double major in chemistry and is an elective course that contributes to the minor in Environmental Science.

Teaching: Three interactive lectures/tutorials per week.

Method of Examination:

- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 50%

CHEM2730 - QUANTITATIVE CHEMICAL ANALYSIS (3 Credits)

Pre-requisite: CHEM1120 Introduction to Physical Chemistry AND CHEM1125 Introduction to Experimental Chemistry

OR

CHEM1010 Fundamentals of Chemistry AND CHEM1020 Introductory Chemistry

Syllabus: This course intends to build the foundations of good analytical laboratory practices by introducing the statistical methods applicable to analytical measurements, sampling techniques and methodology. The course discusses the instrumental methods of analysis including basic instrumentation and principles of spectroscopic methods viz. UV/Visible spectroscopy, fundamentals of Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy. The course also looks at the use of electrochemical methods and chromatographic methods (GC, HPLC) for quantitative chemical analysis.

Teaching: Three lectures and one tutorial per week

Method of Examination:

- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 50%

CHEM2950 - CHEMISTRY ELECTIVE (3 Credits)

Pre-requisites: None

Syllabus: An advanced course in Chemistry taken as an exchange student at an approved institution and pre-approved by the Dean.
LEVEL III CHEMISTRY COURSES

CHEM3167 – ADVANCED INORGANIC CHEMISTRY (3 Credits)
Prerequisites: CHEM2700 Intermediate Inorganic Chemistry OR CHEM2100 Inorganic Chemistry I OR CHEM2115 Main Group Chemistry AND CHEM3115 Transition Metal Chemistry I

Restriction: Not to be taken if student has passed CHEM3100 Inorganic Chemistry II.

Syllabus: This final year inorganic chemistry course covers topics in the applications of group theory to problems in bonding and spectroscopy, the application of physical techniques used to study inorganic systems and the organometallic chemistry of main group and transition elements. It is directed at students at the advanced level of learning and will build on knowledge gained in the prerequisite course(s). It will provide students with a good foundation for graduate work in the fields of inorganic/metalloorganic and materials chemistry.

Teaching: Two lectures and one tutorial per week.

Method of Examination:
Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 50%

CHEM3175 – ADVANCED ORGANIC CHEMISTRY (3 Credits)

Restriction: Not to be taken if student has passed CHEM3200 Organic Chemistry II.

Syllabus: This level III course of 24 lecture hours and associated tutorials emphasizes the importance of organic reaction mechanisms, giving special emphasis to the techniques used in the elucidation of a reaction pathway. It is further supplemented by an investigation into the properties of key organic reaction intermediates, an introduction to the principles of synthetic strategy and retrosynthetic analysis, in addition to a presentation of the essential classes of pericyclic reactions. Case studies taken from synthetic journal articles will be used to highlight the utility of particular reactions in the synthesis of important natural products and drug targets.

Teaching: Two lectures and one tutorial per week.

Method of Examination:
Final Examination (2 hours) 50%
In-course test(s)/Assignment(s) 50%
CHEM3218 – ENVIRONMENTAL CHEMISTRY AND TOXICOLOGY (3 Credits)
Pre-requisites: CHEM2725 Chemistry of the Environment OR CHEM3515 Environmental Chemistry

Syllabus: This course explores the analysis and impact of pollutants in the environment with a focus on their toxicological effects on organisms including man. Fundamental concepts in environmental chemistry and toxicology will be reviewed and applied to a variety of chemicals/environmental issues, such as toxic metals, persistent organic pollutants, emerging chemicals of concern, as well as environmental forensics.

Method of Examination:
Final Examination (2 hours) 50%
In-course test(s)/Assignment(s) 50%

CHEM3620 - ADVANCED PHYSICAL CHEMISTRY (3 Credits)
Pre-requisites: CHEM2710 Intermediate Physical Chemistry OR CHEM2300 Physical Chemistry I OR CHEM2315 Physical Chemistry II

Restriction: Not to be taken if student has passed CHEM3300 Physical Chemistry II.

Syllabus: This elective addresses topics in statistical thermodynamics, the thermodynamics of liquid surfaces, physical methods applied to molecular weight determination of polymers, and theoretical aspects of chemical kinetics and mechanisms. This course requires a solid foundation in basic mathematics, as well as calculus. The aim of this course is to build on the foundations laid by the first-year Introductory Physical Chemistry course and the second-year Intermediate Physical Chemistry course in order to deepen students’ understanding of the behaviour of matter at the macroscopic level. It is an elective for students pursuing a Major in Chemistry. It is applicable to students who wish to enhance their understanding of physical chemistry.

Teaching: Two lectures and one tutorial per week.

Method of Examination:
Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 50%
CHEM3625 – LABORATORY METHODS IN CHEMISTRY III (3 Credits)

Pre-requisites: CHEM2715 Laboratory Methods in Chemistry I OR CHEM2010 Practical Chemistry I
CHEM2720 Laboratory Methods in Chemistry II OR CHEM2020 Practical Chemistry II

Syllabus: This laboratory course is one in which final year students in Chemistry are exposed to concepts and techniques associated with, but not limited to Analytical, Bioinorganic, Bioorganic/Medicinal, Environmental, Inorganic, Organic, and Physical Chemistry. This course primarily seeks to further build on practical theory and techniques acquired during Level II and will equip students with advanced chemistry practical skills. It also seeks to reinforce the principles of laboratory safety that will place the students in good stead for graduate work or future careers. This laboratory experience provides opportunities for learners to develop their skills in making observations, taking measurements, designing experiments, communicating their data, results and conclusions, improving their scientific, information, numeracy and general literacy skills. The course comprises a series of experiments designed to illustrate important preparative reactions, characterization and analytical techniques.

Teaching: Six practical hours per week.

Method of Examination:
Coursework 100%

CHEM3630 – METHODS IN INSTRUMENTAL ANALYSIS (3 Credits)

Pre-requisites: CHEM2730 Quantitative Chemical Analysis OR CHEM2400 Analytical Chemistry I

Restriction: Not to be taken if student has passed CHEM3415 Analytical Chemistry III.

Syllabus: This course focuses on the implementation of advanced instrumental techniques and their applications in analytical chemistry. It discusses the instrumental techniques and method development of analysis including chromatographic methods Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), and electrophoresis. The operating principles and practices of some of the more chemically important instruments, such as FTIR and Mass spectrometers will also be discussed. Students will engage in problem-based activities that will help to develop their skills in the use and interpretation of statistical data using typical analytical methods: calibration curves, weighted and unweighted regression lines and ANOVA. Detailed descriptions of the electro-analytical techniques such as cyclic voltammetry and polarography are also included.

Teaching: Eighteen lecture hours, six tutorial hours and twenty-four laboratory hours per semester.
Method of Examination:
- Final Examination (2 hours) 50%
- In-course test(s)/Assignment(s) 25%
- Practical 25%

CHEM3635 – BIOLOGICAL INORGANIC CHEMISTRY (3 Credits)
Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry OR CHEM2100 Inorganic Chemistry I OR CHEM2115 Main Group Chemistry AND CHEM3115 Transition Metal Chemistry I

Restriction: Not to be taken if student has passed CHEM3135 Bioinorganic Chemistry.

Syllabus: This course is intended for final year chemistry and biochemistry students who wish to cement their knowledge regarding the chemistry of biological molecules. The course will provide students with a general overview of the many fundamental tasks performed by inorganic elements in living organisms as well as the related methods and theories. It focuses on the application of principles of inorganic chemistry to the understanding of biological function at the molecular level. Topics covered include spectroscopic methods in chemical biology, metal ion acquisition & speciation in biological systems, metalloenzymes in metabolism and synthesis, role of metals in diseased states and metal containing pharmaceuticals.

Teaching: Two lectures and one tutorial per week.

Method of Examination:
- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 50%

CHEM3800 – NANOSTRUCTURES AND SUPRAMOLECULAR CHEMISTRY (3 Credits)

Syllabus: This course is intended for final year chemistry and biochemistry students and develops the concepts of supramolecular chemistry (both organic and metal-based systems) and its applications. The course will focus on the general basic and theoretical background of supramolecular chemistry concepts and terminology, and on key intermolecular interactions; supramolecular chemistry of living organisms illustrated using representative natural systems; analytical methods, utilized in supramolecular chemistry and concepts of supramolecular design.

Method of Examination:
- Final Examination (2 hours) 50%
- In-course test(s)/Assignment(s) 50%
CHEM3950 – BASIC PROJECT IN CHEMISTRY (3 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry OR CHEM2100 Inorganic Chemistry I
CHEM2705 Intermediate Organic Chemistry OR CHEM2200 Organic Chemistry I
CHEM2710 Intermediate Physical Chemistry OR CHEM2300 Physical Chemistry I
CHEM2730 Quantitative Chemical Analysis OR CHEM2400 Analytical Chemistry I
CHEM2715 Laboratory Methods in Chemistry I OR CHEM2010 Practical Chemistry I
CHEM2720 Laboratory Methods in Chemistry II OR CHEM2020 Practical Chemistry II

Restrictions: For chemistry majors only or with permission of the Department. Not to be taken if student has passed CHEM3500 Chemistry Project. Not to be taken with CHEM3955 Research Project in Chemistry.

Syllabus: This course consists of a one-semester research project for students pursuing a Chemistry Major, carried out under the supervision of a member of staff. It is meant to provide the necessary training and skill development in the different areas of chemistry and comprises at least sixty-six (66) hours of laboratory and/or computational work, and six (6) hours of orientation workshops, including library session (literature search), scientific report (word processing, Excel) and presentation (Power Point) preparation.

Method of Examination:
- Supervisor’s Assessment: 30%
- Seminar: 15%
- Project Report: 55%

CHEM3955 - RESEARCH PROJECT IN CHEMISTRY (6 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry OR CHEM2100 Inorganic Chemistry I
CHEM2705 Intermediate Organic Chemistry OR CHEM2200 Organic Chemistry I
CHEM2710 Intermediate Physical Chemistry OR CHEM2300 Physical Chemistry I
CHEM2730 Quantitative Chemical Analysis OR CHEM2400 Analytical Chemistry I
CHEM2715 Laboratory Methods in Chemistry I OR CHEM2010 Practical Chemistry I
CHEM2720 Laboratory Methods in Chemistry II OR CHEM2020 Practical Chemistry II

Restrictions: For Chemistry Double Majors only or with permission of the Department. Not to be taken if student has passed CHEM3505 Chemistry Research Project. Not to be taken with CHEM3950 Basic Project in Chemistry, BIOL3990 Biochemistry Project, BIOL3990 Biology Project, ECOL3990 Ecology Project, MICR3990 Microbiology Project or ENSC3900 Research Project in Environmental Science.

Description: This course consists of a yearlong research project for students pursuing a chemistry double major under the supervision of a member of staff. It is meant to provide the necessary training and
skill development in the different areas of chemistry and comprises at least 138 hours of laboratory and/or computational work, and six (6) hours of orientation workshops, including library session (literature search), scientific report (word processing, Excel) and presentation (Power Point) preparation.

Method of Examination:
- Supervisor’s Assessment: 15%
- Seminar: 15%
- Project Report: 70%

CHEM3990 – PROFESSIONAL PLACEMENT FOR CHEMISTS (3 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry OR CHEM2100 Inorganic Chemistry I
CHEM2705 Intermediate Organic Chemistry OR CHEM2200 Organic Chemistry I
CHEM2710 Intermediate Physical Chemistry OR CHEM2300 Physical Chemistry I
CHEM2730 Quantitative Chemical Analysis OR CHEM2400 Analytical Chemistry I
CHEM2715 Laboratory Methods in Chemistry I OR CHEM2010 Practical Chemistry I
CHEM2720 Laboratory Methods in Chemistry II OR CHEM2020 Practical Chemistry II

Syllabus: The course provides a formal internship of at least 4 weeks (160 hours) duration at a private sector, public sector or non-Governmental organisation during which students undertake agreed upon activities relevant to his/her studies. They will work under the guidance of a workplace supervisor as well as an on-campus supervisor and will submit a report and make a presentation at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that will be useful in any future employment sphere.

Method of Examination:
- Placement Report: 50%
- Supervisor’s Appraisal: 35%
- Oral Presentation: 15%

CHEM3992 – SPECIAL TOPICS IN PHYSICAL CHEMISTRY (3 Credits)

Pre-requisites: CHEM2710 Intermediate Physical Chemistry OR CHEM2300 Physical Chemistry I OR CHEM2315 Physical Chemistry II

Restriction: Not to be taken if student has passed CHEM3300 Physical Chemistry II.

Syllabus: This course addresses topics in advanced spectroscopy and fundamental theoretical aspects of quantum mechanics, with a brief introduction to intermolecular forces. This course requires a solid foundation in basic mathematics, as well as the calculus. The aim of this course is to build on the foundations laid by the first-year Introductory Physical Chemistry course and the second-year Intermediate Physical Chemistry in order to deepen students’ understanding of the behaviour of
matter at the microscopic level. It is an elective for students pursuing a major in Chemistry. It is applicable to students who wish to enhance their understanding of the fundamental principles underlying much of Chemistry.

Teaching: Two lectures and one tutorial per week.

Method of Examination:

- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 50%
ENVIRONMENTAL SCIENCE COURSES

LEVEL I ENVIRONMENTAL SCIENCE COURSES

ENSC1000 - EARTH AND ITS ENVIRONMENT (3 Credits)
Pre-requisites: None

Syllabus: This course facilitates students' access to geographical knowledge of the world, including physical features such as the location of continents, countries, oceans and oceanic currents, mountains, deserts, seas, human population. Cartography and map analysis sessions will be used to visualize specific features of the Earth system. The course intends to train students to interpret and look at the Earth System as a holistic system to understand the connections between its different elements.

Teaching: Thirty-six (36) hours of interactive lectures tutorials.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment (s)</td>
<td>80%</td>
</tr>
<tr>
<td>In-course test</td>
<td>20%</td>
</tr>
</tbody>
</table>

ENSC1001 - INTRODUCTION TO PHYSICAL GEOLOGY: DYNAMIC EARTH (3 Credits)
Pre-requisites: None

Syllabus: This course introduces geology, the study of the solid earth; its structure, composition and the internal and surface processes that combine to form the planet upon which we live. The driving force behind these processes is plate tectonics the “unifying theory” which explains many of the phenomena observed in the solid Earth. The course will also examine how the study of earthquakes has been crucial in developing an understanding of the Earth's internal structure. At a more local level, the role that plate tectonics has played in the geological formation and development of Barbados and the other islands of the Lesser Antilles will be also studied.

Teaching: Two (2) hours of lecture/tutorial per week, and a maximum of two (2) of practical class every week.

Method of Examination:

100% coursework distributed as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In class/online quizzes, course work, In-course Test(s)/Assignment(s)</td>
<td>50%</td>
</tr>
<tr>
<td>Practical session activities and exercises</td>
<td>50%</td>
</tr>
</tbody>
</table>
LEVEL II ENVIRONMENTAL SCIENCE COURSES

ENSC2000 - ESSENTIALS OF OCEANOGRAPHY (3 Credits)

Pre-requisites: METE1110 Introduction to Ocean and Climate OR ENSC1000 Earth and its Environment OR METE1200 Oceans and Climate

Syllabus: Oceanography is the scientific study of all aspects of the marine environment. This course is designed to provide a working knowledge of important ocean processes by integrating relevant aspects of physical, chemical and biological oceanography. It will provide the student with tools to assess information on the major geographic features of the ocean basins and their origin, the chemistry of the ocean and its role in regulating climate and productivity, the origins and dynamics of wind waves, tsunamis, tides and coastal processes, and marine pollution problems. The lectures/tutorials will focus on the description and explanation of the ocean as an integrated system, whilst wet and dry practical sessions (including field exercises) will deal with application to working scenarios to underpin the theory provided. Laboratory exercises will emphasize problem solving, and data analysis and interpretation, leading to a working knowledge of oceanographic processes.

Teaching: Twenty-four (24) hours of lectures/tutorials; twenty-four (24) hours of practical exercises/fieldwork.

Method of Examination:

Theory: Final Examination (2 hours) 50%
Theory: In-course Test(s)/Assignment(s) 20%
Practical/field work 30%

ENSC2001- INTRODUCTION TO THE EARTH LIFE SYSTEM (3 Credits)

Pre-requisites: ENSC1001 An Introduction to Physical Geology: Dynamic Earth OR ERSC1001 Dynamic Earth; AND METE1110 Introduction to Oceans and Climate OR METE1200 Oceans and Climate OR ENSC1000 Earth and Its Environment.

Syllabus: This course provides a more integrated approach, summarizing the history of the significant environmental changes that have taken place during the past four-and-a-half billion years of the Earth’s history, illustrating the effects of those changes on life and the influence of life in effecting change. The lectures will explain Earth-system processes and provide supporting evidence for environmental change from the geological record and numerical models. Assignments will focus on problem solving, analysis and interpretation of tabular, graphical and numerical data.
Teaching: Two (2) hour lectures and one (1) hour of tutorial.

Method of Examination:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination (2 hours)</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>40%</td>
<td></td>
</tr>
</tbody>
</table>

ENSC2002 - EARTH’S CLIMATE (3 Credits)

Pre-requisites: ENSC1000 Earth and its Environment OR METE1110 Introduction to Ocean and Climate OR METE1200 Oceans and Climate

Syllabus: This course provides a detailed description of the earth’s climate from seasonal to annual time scales based on a geographical approach. The global distribution of climate parameters and their fluctuation through the year are explained in detail in conjunction with the sun-earth relationship, atmospheric and oceanic global circulation, latitudinal and longitudinal effects, and topography. The topics cover the seasonal cycle of temperature and rainfall and the atmospheric and oceanic circulation at global and regional scales. The course also points out the interrelations between the different components of the earth’s system, and explains the different mechanisms involved in the climate system. The regional climate and their classification will be presented with an introduction of the Caribbean climate. The students will be assessed on their ability to relate the different climate parameters and to explain why such a climate is observed in a given area. This course is part of the minor in Environmental Science and will also benefit students in Ecology and Meteorology.

Teaching: Twenty-four (24) hours of interactive lecture/tutorials.

Method of Examination:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination (2 hours)</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Theory: In-course Test(s)/Assignment(s)</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Practical: Lab tests</td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>

ENSC2003 - SUSTAINABLE ENERGY SYSTEMS (3 Credits)

Pre-requisites: Fifteen (15) Level 1 Faculty of Science & Technology (FST) credits

Syllabus: This course is an elective on the Environmental Science minor and will provide an opportunity for students to gain an understanding of the wider implications of human interaction with our environment. This course will first explain how societies traditionally source their energy for electricity production and the impact that this is having on our environment, before providing an introduction to sustainable energy resources and the technologies that can be used to take advantage of them. At the heart of this course is a look at how a Caribbean small island state can transition from an energy system dominated by fossil fuels, towards one that is based on 100% clean, economically viable, indigenous sustainable energy sources. The subject matter for this course is interdisciplinary in nature and has been designed for all FST students. It is recommended
to those students interested in pursuing careers/further study in the expanding field of sustainable energy systems.

Teaching: Twenty-four (24) lectures/tutorials and twenty-four (24) hours of practical work.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: Final Examination (2 hours)</td>
<td>50%</td>
</tr>
<tr>
<td>In-course test(s):</td>
<td>25%</td>
</tr>
<tr>
<td>Laboratory report:</td>
<td>10%</td>
</tr>
<tr>
<td>Group presentation:</td>
<td>10%</td>
</tr>
<tr>
<td>Online discussion forum and field trip reports:</td>
<td>5%</td>
</tr>
</tbody>
</table>
LEVEL III ENVIRONMENTAL SCIENCE COURSES

ENSC3000 - CLIMATE VARIATION AND CHANGE (3 Credits)

Pre-requisites: ENSC2002 Earth’s Climate OR ERSC2002 Climatology

Syllabus: Climate variations have always influenced the geographical location of flora and fauna and the settlement of the populations on Earth. The recent observed warming of the earth represents a “real time” example of these interactions. Therefore this course provides physical explanations on how and why the climate has varied since the last 400 000 years with an emphasis on the Holocene period and the post-industrial period. The course will provide the students with keys and tools to assess the past, present and future climate variations. Hence the role of the radiative forcing, feedback and physical processes in the variations of the climate at global and regional scale will be demonstrated. The impact of the climate variation on the environment will be also demonstrated. The last part of the course focuses the Caribbean climate. The impacts of the climate change on the environment are studied in this course The lectures will focus on the description and explanation of the processes involved in climate’s variations while the practical sessions will provide the tools to analyze and interpret such variations.

Teaching: Twenty-four (24) lectures/tutorials, and twelve (12) 2-hour practical sessions.
Method of Examination:
- Theory: Final Examination (2 hours) 50%
- Theory: In-course Test(s)/Assignment(s) 20%
- Practical: Lab test and/or report 30%

ENSC3001 - NATURAL HAZARDS AND DISASTERS (3 Credits)

Pre-requisites: ENSC1001: An Introduction to Physical Geology: Dynamic Earth AND ENSC2002: Earth’s Climate OR ERSC2002 Climatology

Syllabus: Natural disasters of one form or another occur almost daily and such events can be extremely costly both in human lives and financial terms. The islands of the Caribbean are vulnerable to a variety of natural hazards due to a combination of their tropical climate and geographical location. This course builds on the knowledge acquired from ENSC1001: An Introduction to Physical Geology: Dynamic Earth and ENSC2002 Earth’s Climate in order to explain the physical processes that lead to natural disasters, the impact of those disasters on communities and the ways in which the risks of such disasters can be reduced.

Teaching: Twenty-four (24) lectures and twelve (12) tutorials.
Method of Examination:

| Theory: Final Examination (3 hours) | 50% |
| Theory: In-course Test(s)/Assignment(s) | 50% |

ENSC3020 CASE STUDY IN ENVIRONMENTAL SCIENCE (3 Credits)

Pre-requisites: The students must have completed at least 24 advanced credits (level 2/3) and projects will be awarded at the discretion of the supervisor.

Course Anti-requisite:

ENSC3900 Research Project in Environmental Science

Syllabus: This course provides an opportunity for students to take theoretical ideas learned and apply them directly to the world around them to raise awareness in environmental issues. It allows students to develop an idea, synthesise data and information, and develop this into a concept for dissemination. Students will be able to choose from but are not limited to the following options: 1. Primary Research, 2. Secondary Research, 3. Case Study Paper, 4. Service Learning Project, 5. Creative Project. Students are expected to spend a minimum of at least 36 hours of work on the project across a semester, meeting weekly with their supervisor(s). At the beginning of the course the students are expected to write a short proposal for their case study. At the end of the course students are required to provide a report summarising their study as well as an appropriate presentation (e.g. poster, power point, blog, video) to disseminate their work.

Teaching: The course is based on active learning. The student will independently gather information sources to develop the case study which will be kept in the form of a journal which will be assessed each week to ensure progress. Students will also be involved in weekly group meetings/discussions/tutorial sessions with their supervisor(s) who will guide them in the case study design, data collection/synthesis, and the analysis and interpretation of such data/information. Online content will provide the foundation of the course content which will be reinforced throughout weekly supervisor assessment of progress. A library session will be provided for students to assist them in developing their skills in searching online databases for relevant resources.

Method of Examination: The course will be assessed by means of 100% coursework as follows:

- Proposal: 10%
- Concept Map: 10%
- Project Report and Journal Assessment: 40%
- Presentation: 20%
- Supervisor Assessment: 20%
ENSC3900 - RESEARCH PROJECT IN ENVIRONMENTAL SCIENCE (6 Credits)

Pre-requisites: A minimum of 6 credits from ENSC level II or III courses. The students must be in their final year and projects will be awarded at the discretion of the supervisor.

Restrictions: Any other 6 credit research project offered within the Department of Biological and Chemical Sciences

Syllabus: This course provides an opportunity to involve students in practical research in environmental science fields. It provides the opportunity for students to further develop their practical and analytical skills acquired in the level II and III environmental science courses. The course is developed around a research project defined and supervised by a member(s) of the Faculty of Science and Technology. A research project will be assigned to students who show interest in such a course and who have already demonstrated some abilities in environmental sciences. Students are expected to spend a total of 144 hours of work on the project across both semesters/summer, meeting weekly with their supervisor(s).

Teaching: Students will be involved in weekly meeting/discussions with their supervisor(s) who will provide training in relevant laboratory/field methods/skills and guide the student in experimental design, data collection and the analysis and interpretation of the data collected. A library session for students to assist them in developing their skills in searching online databases for relevant resources will be provided.

Method of Examination:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor’s Assessment</td>
<td>15%</td>
</tr>
<tr>
<td>Seminar</td>
<td>15%</td>
</tr>
<tr>
<td>Project Report</td>
<td>70%</td>
</tr>
</tbody>
</table>

168
COURSES BY SEMESTER: COMPUTER SCIENCE, SOFTWARE ENGINEERING, ELECTRONICS, MATHEMATICS AND PHYSICS:

SEMESTER I

PRELIMINARY (6 Credits)
- COMP0001 Preliminary Computer Science I
- MATH0100 Pre Calculus
- PHYS0070 Preliminary Physics I

LEVEL I (3 Credits)
- COMP1170 Entrepreneurship for Computer Scientist
- COMP1205 Computing I
- COMP1210 Computing II
- COMP1215 UNIX
- ELET1205 Computer Aided Design
- ELET1210 Digital Electronics I
- ELET1220 Introduction to Electronics
- MATH1190 Calculus A
- MATH1195 Calculus B
- MATH1141 Introductory Linear Algebra & Analytical Geometry
- MATH1235 Python Programming & Mathematical Software
- PHYS1200 Physics I: Mechanics of Translational Motion
- PHYS1205 Physics II: Rotation, Waves and Thermodynamics
- SWEN1000: An Introduction to Computing I
- SWEN1002: Computing in Society
- SWEN1004: Mathematics for Software Engineers
- SWEN1006: Research Methods for Software Engineers
- SWEN1008 Technical Writing for Software Engineers

SEMESTER II

PRELIMINARY (6 Credits)
- COMP0002 Preliminary Computer Science II
- MATH0110 Calculus and Analytical Geometry
- PHYS0071 Preliminary Physics II

LEVEL I (3 Credits)
- COMP1180 Mathematics for Computer Science I
- COMP1205 Computing I
- COMP1210 Computing II
- COMP1215 UNIX
- ELET1200 Basic Circuit Analysis
- ELET1210 Digital Electronics I
- ELET1215 Digital Electronics II
- MATH1152 Sets and Number Systems
- MATH1190 Calculus A
- MATH1195 Calculus B
- MATH1230 Introductory Applied Statistics I
- MATH1235 Python Programming & Mathematical Software
- PHYS1210 Physics III: Electric Fields, Currents and Circuits
- PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics
- SWEN1001: An Introduction to Object Oriented Programming
- SWEN1003: Current and Future Trends in Computing for Software Engineers
- SWEN1005: Mobile Web Programming
- SWEN1007: Software Engineering Essentials
- SWEN1009: An Introduction to Computing II

LEVEL II (3 Credits)
- COMP2210 Mathematics for Computer Science II
- COMP2220 Computer System Architecture
- COMP2225 Software Engineering
- COMP2232 Object-Oriented Programming Concepts
- COMP2235 Networks I

LEVEL II (3 Credits)
- COMP2210 Mathematics for Computer Science II
- COMP2220 Computer System Architecture
- COMP2225 Software Engineering
- COMP2232 Object-Oriented Programming Concepts
- COMP2235 Networks I
COMP2245 Web Development Concepts, Tools & Practices
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ELET2215 Microprocessor Systems
ELET2230 Digital Communication Systems I
ELET2240 Sensor & Actuator Devices
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2315 Linear Algebra 1
MATH2330 Probability Theory I
PHYS2400 Mathematical Methods in Physics I
PHYS2410 Modern Physics
PHYS2420 Advanced Physics Laboratory I
SWEN2001: An Introduction to Software Engineering
SWEN2003: Computer Networking & Security
SWEN2004: Computer Organization
SWEN2006: Discrete Mathematics for Software Engineers

LEVEL III (3 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
COMP3360 Networks II
COMP3370 Software Engineering on a Large Scale
COMP3412 Scalable Enterprise Web Applications
COMP3420 Computer Graphics
COMP3440 E-Commerce
COMP3490 Research Project in Computer Science
COMP3495 Major Research Project in Computer Science*
COMP3499 Group Research Project in Computer Science
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
MATH3565 Probability Theory 2
MATH3600 Topics in Discrete & Computational Geometry

COMP2245 Web Development Concepts, Tools & Practices
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2235 Automation Technology & Applications
ENSC2003 Sustainable Energy Systems
MATH2310 Abstract Algebra 1
MATH2321 Real Analysis 1
MATH2325 Elementary Number Theory
MATH2335 Statistics 1
PHYS2405 Mathematical Methods in Physics II
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I
SWEN2000: An Introduction to Requirements Engineering
SWEN2002: An Introduction to the Analysis of Algorithms
SWEN2005: Database Systems
SWEN2007: Object Oriented Design and Implementation

LEVEL III (3 Credits)
COMP3330 Database Management Systems I
COMP3365 Networks III
COMP3375 Software Testing and Quality
COMP3385 Framework Design For Advanced Web Development
COMP3415 Database Management Systems II
COMP3435 User-Interface Design
COMP3445 Computer Information Systems
COMP3450 Fundamentals of Artificial Intelligence
COMP3490 Research Project in Computer Science
COMP3499 Group Research Project in Computer Science
ELET3215 Microcontroller Technology
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
MATH3620 Financial Mathematics I
PHYS3420 Electromagnetic Theory I
PHYS3445 Fundamentals of General Relativity and Cosmology
PHYS3450 Fluid Mechanics
PHYS3455 Lasers and Optical Systems

PHYS3485 Theory of Statistical Mechanics
PHYS3490 Physics One-Semester Research Project
PHYS3495 Physics Two-Semester Research Project*
SWEN3001: Android Application Development I
SWEN3000: Application Development for IOS Devices
COMP3425: Mobile Applications for iOS Development

ELET3298 Group Electronics Research Project
MATH3560 Metric Spaces & Topology
MATH3570 Statistics 2
MATH3575 Topics in Numerical Analysis
MATH3605 Topics in Graph Theory

PHYS3460 Physics of Sustainable Energy Systems
PHYS3465 Electromagnetic Theory II
PHYS3470 Biological Physics
PHYS3475 Fundamentals of Solid State Physics
PHYS3480 Theory of Quantum Mechanics
PHYS3490 Physics One-Semester Research Project
PHYS3495 Physics Two-Semester Research Project*
COURSES BY SEMESTER: METEOROLOGY

SEMESTER I

LEVEL I
METE1110 Introduction to Oceans and Climate (3 credits)
METE1130 Introduction to Physical Meteorology
METE1125 Mete. Observations, Instruments & Basic Analysis

LEVEL II
METE2100 Dynamic Meteorology I
METE2110 Atmospheric Thermodynamics
METE23XX Hydrometeorology Fundamentals

LEVEL III
METE3100 Dynamic Meteorology II
METE3200 Synoptic Meteorology II

SEMESTER II

LEVEL I
METE1135 Introduction to Dynamic Meteorology
METE1125 Mete. Observations, Instruments & Basic Analysis
METE1305 Intro. To Climate Change and Society

LEVEL II
METE2120 Physical Meteorology
METE2200 Synoptic Meteorology I

LEVEL III
METE3300 Tropical Meteorology
METE3400 Weather Radars and Satellites
METE35XX Climate, Biosphere, and Ecosystems
COMPUTER SCIENCE, INFORMATION TECHNOLOGY AND SOFTWARE ENGINEERING

The Department of Computer Science, Mathematics & Physics offers a Major, Double Major and Minor in Computer Science and a Major and Minor in Information Technology. In association with the Faculty of Social Sciences, the Options of a Double Major combining Computer Science or Information Technology with Accounting or Management are also offered to select students (See Appendix VI, Options in conjunction with other Faculties).

It is a requirement of the discipline that, to pass any Computer Science course, students must pass both Coursework and Final exam.
MAJOR IN COMPUTER SCIENCE: Course Descriptions

LEVEL I
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX

LEVEL II
COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures

LEVEL III (9 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses:
COMP2235 Networks I
COMP2245 Web Development Concepts, Tools and Practices
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2950 Computer Science Elective
COMP3360 Networks II
COMP3365 Networks III
COMP3450 Fundamentals of Artificial Intelligence
COMP3370 Software Engineering On A Large Scale
COMP3375 Software Testing and Quality
COMP3385 Framework Design For Advanced Web Development
COMP3412 Scalable Enterprise Web Applications
COMP3415 Database Management Systems II
COMP3420 Computer Graphics
COMP3425 Mobile Applications for iOS Devices
COMP3435 User Interface Design
COMP3440 E-Commerce
COMP3445 Computer Information Systems
COMP3490 Research Project in Computer Science
COMP3495 Major Research Project in Computer Science (6 Credits)
COMP3499 Group Research Project in Computer Science
MINOR IN COMPUTER SCIENCE [Fifteen (15) Credits]: Course Descriptions

At Least Nine (9) Credits From:
- COMP2210 Mathematics for Computer Science II
- COMP2220 Computer System Architecture
- COMP2225 Software Engineering
- COMP2232 Object-Oriented Programming Concepts
- COMP2611 Data Structures
- COMP3310 Algorithms
- COMP3320 Design Principles of Operating Systems
- COMP3330 Database Management Systems I

AND at Most Six (6) Credits from Computer Science Elective Courses:
- COMP2235 Networks I
- COMP2245 Web Development Concepts, Tools and Practices
- COMP2410 Computing in the Digital Age
- COMP2415 Information Technology Engineering
- COMP2950 Computer Science Elective
- COMP3360 Networks II
- COMP3365 Networks III
- COMP3370 Software Engineering On A Large Scale
- COMP3375 Software Testing and Quality
- COMP3385 Framework Design For Advanced Web Development
- COMP3412 Scalable Enterprise Web Applications
- COMP3415 Database Management Systems II
- COMP3420 Computer Graphics
- COMP3425 Mobile Applications for iOS Devices
- COMP3435 User Interface Design
- COMP3440 E-Commerce
- COMP3445 Computer Information Systems
- COMP3490 Research Project in Computer Science
- COMP3495 Major Research Project in Computer Science (6 Credits)
- COMP3499 Group Research Project in Computer Science
MAJOR IN INFORMATION TECHNOLOGY: Course Descriptions

LEVEL I
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX

LEVEL II
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures

LEVEL III
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User-Interface Design

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses:
COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2235 Networks I
COMP2245 Web Development Concepts, Tools and Practices
COMP2950 Computer Science Elective
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3360 Networks II
COMP3365 Networks III
COMP3450 Fundamentals of Artificial Intelligence
COMP3370 Software Engineering On A Large Scale
COMP3375 Software Testing and Quality
COMP3385 Framework Design For Advanced Web Development
COMP3412 Scalable Enterprise Web Applications
COMP3420 Computer Graphics
COMP3425 Mobile Applications for iOS Devices
COMP3440 E-Commerce
COMP3445 Computer Information Systems
COMP3490 Research Project in Computer Science
COMP3495 Major Research Project in Computer Science (6 Credits)
COMP3499 Group Research Project in Computer Science
MINOR IN INFORMATION TECHNOLOGY [Fifteen (15) Credits]:

Descriptions

At Least Nine (9) Credits From:
- COMP2225 Software Engineering
- COMP2232 Object-Oriented Programming Concepts
- COMP2410 Computing in the Digital Age
- COMP2415 Information Technology Engineering
- COMP2611 Data Structures
- COMP3330 Database Management Systems I
- COMP3435 User Interface Design
- COMP3415 Database Management Systems II

AND At Most Six (6) Credits From:
- COMP2210 Mathematics for Computer Science II
- COMP2220 Computer System Architecture
- COMP2235 Networks I
- COMP2245 Web Development Concepts, Tools and Practices
- COMP2950 Computer Science Elective
- COMP3310 Algorithms
- COMP3320 Design Principles of Operating Systems
- COMP3360 Networks II
- COMP3365 Networks III
- COMP3450 Fundamentals of Artificial Intelligence
- COMP3370 Software Engineering On A Large Scale
- COMP3375 Software Testing and Quality
- COMP3385 Framework Design For Advanced Web Development
- COMP3412 Scalable Enterprise Web Applications
- COMP3420 Computer Graphics
- COMP3425 Mobile Applications for iOS Devices
- COMP3440 E- Commerce
- COMP3445 Computer Information Systems
- COMP3490 Research Project in Computer Science
- COMP3495 Major Research Project in Computer Science (6 Credits)
- COMP3499 Group Research Project in Computer Science
DOUBLE MAJOR IN COMPUTER SCIENCE:

LEVEL I
- COMP1170 Entrepreneurship for Computer Scientists
- COMP1180 Mathematics for Computer Science I
- COMP1205 Computing I
- COMP1210 Computing II
- COMP1215 UNIX

LEVEL II
- COMP2210 Mathematics for Computer Science II
- COMP2220 Computer System Architecture
- COMP2225 Software Engineering
- COMP2232 Object-Oriented Programming Concepts
- COMP2235 Networks I
- COMP2611 Data Structures

LEVEL III (18 Credits)
- COMP3310 Algorithms
- COMP3320 Design Principles of Operating Systems
- COMP330 Database Management Systems I
- COMP3360 Networks II

AND
- COMP3340 Research Project in Computer Science

AND
- Three (3) Level III credits from Computer Science

OR
- COMP3495 Major Research Project in Computer Science (6 Credits)

OR
- COMP3499 Group Research Project in Computer Science

AND
- Three (3) Level III credits from Computer Science

AND at least Twenty-Four (24) Credits From Computer Science Elective Courses:
- COMP2245 Web Development Concepts, Tools and Practices
- COMP2410 Computing in the Digital Age
- COMP2415 Information Technology Engineering
- COMP2950 Computer Science Elective
- COMP3365 Networks III
- COMP3450 Fundamentals of Artificial Intelligence
- COMP3370 Software Engineering On A Large Scale
- COMP3375 Software Testing and Quality
- COMP3385 Framework Design For Advanced Web Development
- COMP3412 Scalable Enterprise Web Applications
- COMP3415 Database Management Systems II
- COMP3420 Computer Graphics
- COMP3425 Mobile Applications for iOS Devices
- COMP3435 User-Interface Design
- COMP3440 E-Commerce
- COMP3445 Computer Information Systems
Equivalences between Old and New Computer Science Courses For the Purpose of Fulfilling Major and Minor Requirements

<table>
<thead>
<tr>
<th>Old 4 Credit Course</th>
<th>New 3 Credit Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP1105 Computer Programming I</td>
<td>COMP1205 Computing I</td>
</tr>
<tr>
<td>COMP1115 Computer Programming II</td>
<td>COMP1210 Computing II</td>
</tr>
<tr>
<td>MATH1101 Basic Mathematics I/</td>
<td>COMP1180 Mathematics for Computer Science I</td>
</tr>
<tr>
<td>MATH1100 Basic Mathematics</td>
<td>COMP1215 Unix</td>
</tr>
<tr>
<td>COMP1125 Introduction to Unix</td>
<td>COMP1170 Entrepreneurship for Computer Scientists</td>
</tr>
<tr>
<td>COMP1130 Web Technology Fundamentals</td>
<td>COMP2210 Mathematics for Computer Science II</td>
</tr>
<tr>
<td>COMP2105 Discrete Mathematics</td>
<td>COMP2611 Data Structures</td>
</tr>
<tr>
<td>COMP2115 Information Structures</td>
<td>COMP2220 Computer System Architecture</td>
</tr>
<tr>
<td>COMP2125 Computer Architecture</td>
<td>COMP2225 Software Engineering</td>
</tr>
<tr>
<td>COMP2145 Software Engineering I</td>
<td>COMP2235 Networks I</td>
</tr>
<tr>
<td>COMP2150 Computer Networks I</td>
<td>COMP2245 Web Development Concepts, Tools and Practices</td>
</tr>
<tr>
<td>COMP2155 Building Web Applications</td>
<td></td>
</tr>
<tr>
<td>COMP2160 Object-Oriented Programming</td>
<td>COMP2232 Object-Oriented Programming Concepts</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>COMP2410 Computing in the Digital Age</td>
</tr>
<tr>
<td>COMP3180 Algorithm Design and Analysis</td>
<td>COMP2415 Information Technology Engineering</td>
</tr>
<tr>
<td>COMP3100 Operating Systems</td>
<td>COMP3310 Algorithms</td>
</tr>
<tr>
<td>COMP3155 Computer Networks II</td>
<td>COMP3320 Design Principles of Operating Systems</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>COMP3360 Networks II</td>
</tr>
<tr>
<td>COMP3125 Artificial Intelligence</td>
<td>COMP3365 Networks III</td>
</tr>
<tr>
<td>COMP3140 Software Engineering II</td>
<td>COMP3450 Fundamentals of Artificial Intelligence</td>
</tr>
<tr>
<td>COMP3165 Software Quality Assurance</td>
<td>COMP3370 Software Engineering on a Large Scale</td>
</tr>
<tr>
<td>COMP3170 Web-Based Applications</td>
<td>COMP3375 Software Testing and Quality</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>COMP3385 Framework Design for Advanced Web Development</td>
</tr>
<tr>
<td>COMP3260 Computer Graphics I</td>
<td>COMP3412 Scalable Enterprise Web Applications</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>COMP3420 Computer Graphics</td>
</tr>
<tr>
<td>COMP3160 Database Management Systems</td>
<td>COMP3425 Mobile Applications for iOS Devices</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>COMP3330 Database Management Systems I</td>
</tr>
<tr>
<td>COMP3220 Human-Computer Interaction</td>
<td>COMP3415 Database Management Systems II</td>
</tr>
<tr>
<td>COMP3210 Electronic Commerce</td>
<td>COMP3435 User-Interface Design</td>
</tr>
<tr>
<td>COMP3115 Information Systems</td>
<td>COMP3440 E-Commerce</td>
</tr>
<tr>
<td>COMP3910 Computer Science Research Project</td>
<td>COMP3445 Computer Information Systems</td>
</tr>
<tr>
<td>COMP3920 Computer Science Major Research Project (8 credits)</td>
<td>COMP3490 Research Project in Computer Science</td>
</tr>
<tr>
<td></td>
<td>COMP3495 Major Research Project in Computer Science</td>
</tr>
</tbody>
</table>
MAJOR IN SOFTWARE ENGINEERING (UWICIT): Course Descriptions

LEVEL I (30 Credits)
SWEN1000 An Introduction to Computing I
SWEN1001 An Introduction to Object Oriented Programming
SWEN1002 Computing in Society
SWEN1003 Current and Future Trends in Computing for Software Engineers
SWEN1004 Mathematics for Software Engineers
SWEN1005 Mobile Web Programming
SWEN1006 Research Methods for Software Engineers
SWEN1007 Software Engineering Essentials
SWEN1008 Technical Writing for Software Engineers
SWEN1009 An Introduction to Computing II

LEVEL II (36 Credits)
SWEN2000 An Introduction to Requirements Engineering
SWEN2001 An Introduction to Software Engineering
SWEN2002 An Introduction to the Analysis of Algorithms
SWEN 2003 Computer Networking & Security
SWEN2004 Computer Organization
SWEN2005 Database Systems
SWEN2006 Discrete Mathematics for Software Engineers
SWEN2007 Object Oriented Design and Implementation
SWEN 2011 Chinese Language & IT
SWEN 2013 Elementary Chinese Culture and Language*
SWEN 2014 Intermediate Chinese Culture and Language*
CHIN2005 Beginner Chinese Language

LEVEL III (24 Credits)
SWEN3000 Application Development for IOS Devices*
SWEN3001 Android Application Development I*
SWEN3002 Android Application Development II*
SWEN3003 Web & Mobile Application Development I*
SWEN3004 Web & Mobile Application Development II*
SWEN3120 Software Architecture*
SWEN3145 Software Modelling*
SWEN3165 Software Testing*

LEVEL IV (24 Credits)
SWEN4001 Advanced Database Systems*
SWEN4XXX Software Engineering Capstone Project*†
SWEN4XXX Project Management for Software Engineering*
SWEN4XXX IT Certification I*
SWEN4XXX Internship in Computing I*
SWEN4XXX Internship in Computing II*†

* course taught in China
† six-credit course
ELECTRONICS

The Department of Computer Science, Mathematics & Physics offers a Major and Minor in Electronics.

MAJOR IN ELECTRONICS: Course Descriptions

<table>
<thead>
<tr>
<th>Level</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>ELET1200</td>
<td>Basic Circuit Analysis</td>
</tr>
<tr>
<td></td>
<td>ELET1210</td>
<td>Digital Electronics I</td>
</tr>
<tr>
<td></td>
<td>ELET1215</td>
<td>Digital Electronics II</td>
</tr>
<tr>
<td></td>
<td>ELET1220</td>
<td>Introduction to Electronics</td>
</tr>
<tr>
<td></td>
<td>ELET1205</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td></td>
<td>MATH1190</td>
<td>Calculus A</td>
</tr>
</tbody>
</table>

And 30 Credits from Level II & III Electronics courses as indicated below:

LEVEL II

At Least Twelve (12) Credits (Four Courses) From:

- ELET2215 Microprocessor Systems
- ELET2220 Circuit Simulation & Applications
- ELET2225 Discrete Component Electronics
- ELET2230 Digital Communication Systems I
- ELET2235 Automation Technology & Applications
- ELET2240 Sensor & Actuation Devices
- PHYS2400 Mathematical Methods in Physics I

LEVEL III

At Most Eighteen (18) Credits (Six Courses) From:

- ELET3215 Microcontroller Technology
- ELET3220 Control Systems
- ELET3230 Essentials of Digital Signal Processing (DSP)
- ELET3235 Digital Communication Systems II
- ELET3240 Digital Communication Systems III
- ELET3250 Biomedical Instrumentation
- ELET3255 Wireless Communications
- ELET3260 Advanced Microprocessors & Systems
- ELET3290 Semester Electronics Research Project
- ELET3295 Major Electronics Research Project
- ELET3298 Group Electronics Research Project
MINOR IN ELECTRONICS (FIFTEEN LEVELS II/III CREDITS): [Course Descriptions]

Fifteen (15) Credits (Five Courses) From:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I
ELET3215 Microcontroller Technology
ELET3220 Control Systems

ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

MINOR IN MEDICAL ELECTRONICS [Fifteen (15) Credits]: [Course Descriptions]

ELET2225 Discrete Component Electronics
ELET2240 Sensor & Actuation Devices
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3250 Biomedical Instrumentation

A student with a Minor in Medical Electronics cannot count any of these courses as part of their Major or Minor in Electronics
Equivalences between Old and New Electronics Courses for the Purpose of Fulfilling Major and Minor Requirements

<table>
<thead>
<tr>
<th>OLD COURSE</th>
<th>NEW COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET1100 Circuit Analysis</td>
<td>ELET1200 Basic Circuit Analysis</td>
</tr>
<tr>
<td>ELET1110 Digital Electronics</td>
<td>ELET1210 Digital Electronics I</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>ELET1215 Digital Electronics II</td>
</tr>
<tr>
<td>ELET1120 Basic Electronics</td>
<td>ELET1220 Introduction to Electronics</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>ELET1205 Computer Aided Design</td>
</tr>
<tr>
<td>ELET2110 Circuit Simulation</td>
<td>ELET2220 Circuit Simulation and Applications</td>
</tr>
<tr>
<td>ELET2120 Discrete Device Electronics</td>
<td>ELET2225 Discrete Component Electronics</td>
</tr>
<tr>
<td>ELET2130 Digital Communications</td>
<td>ELET2230 Digital Communication Systems I</td>
</tr>
<tr>
<td>ELET2100 Microprocessors I</td>
<td>ELET2215 Microprocessor Systems</td>
</tr>
<tr>
<td>ELET2150 Automation Technology</td>
<td>ELET2235 Automation Technology and Applications</td>
</tr>
<tr>
<td>ELET3210 Sensors & Actuator Technology</td>
<td>ELET2240 Sensors and Actuation Devices</td>
</tr>
<tr>
<td>ELET3041 Microcontrollers & Applications</td>
<td>ELET3215 Microcontroller Technology</td>
</tr>
<tr>
<td>ELET3110 Control & Instrumentation</td>
<td>ELET3220 Control Systems</td>
</tr>
<tr>
<td>ELET3130 Introduction to Digital Signal Processing (DSP)</td>
<td>ELET3230 Essentials of Digital Signal Processing (DSP)</td>
</tr>
<tr>
<td>ELET3151 Digital Communications II</td>
<td>ELET3235 Digital Communication Systems II</td>
</tr>
<tr>
<td>None</td>
<td>ELET3240 Digital Communication Systems III</td>
</tr>
<tr>
<td>ELET2140 Medical Instrumentation</td>
<td>ELET3250 Biomedical Instrumentation</td>
</tr>
<tr>
<td>None</td>
<td>ELET3255 Wireless Communications</td>
</tr>
<tr>
<td>None</td>
<td>ELET3260 Advanced Microprocessors and Systems</td>
</tr>
<tr>
<td>ELET3160 Electronics Research Project</td>
<td>ELET3290 Semester Electronics Research Project</td>
</tr>
<tr>
<td>ELET3160 Electronics Research Project</td>
<td>ELET3295 Major Electronics Research Project</td>
</tr>
<tr>
<td>ELET3160 Electronics Research Project</td>
<td>ELET3298 Group Electronics Research Project</td>
</tr>
</tbody>
</table>
MATHEMATICS

The Department of Computer Science, Mathematics & Physics offers a Double Major, Major and Minor in Mathematics.

It is a requirement of the discipline that, to pass any Mathematics course, students must pass the Final exam and attain an overall course grade of more than 50%.

MAJOR IN MATHEMATICS: Course Descriptions

LEVEL I
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software

LEVEL II
MATH2304 Multivariable Calculus
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2305 Differential Equations

LEVEL III
MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2

AND
MATH3555 Complex Analysis

OR
MATH3560 Introduction to Metric Spaces & Topology

AND Three (3) Credits from Mathematics Elective Courses:
MATH2325 Elementary Number Theory
MATH2330 Probability Theory 1
MATH2335 Statistics 1
MATH3555 Complex Analysis
MATH3560 Metric Spaces & Topology
MATH3565 Probability Theory 2
MATH3570 Statistics 2
MATH3575 Topics in Numerical Analysis
MATH3580 Fourier Analysis with Partial Differential Equations
MATH3600 Topics in Discrete & Computational Geometry
MATH3605 Topics in Graph Theory
MATH3620 Financial Mathematics 1
MATH3621 Financial Mathematics 2
MINOR IN MATHEMATICS [Fifteen (15) Credits at Level II]: Course Descriptions

LEVEL II
MATH2304 Multivariable Calculus
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2305 Differential Equations

DOUBLE MAJOR IN MATHEMATICS: Course Descriptions

LEVEL I
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming and Mathematical Software
MATH1230 Introductory Applied Statistics 1

LEVEL II
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2330 Probability Theory 1
MATH2335 Statistics 1

LEVEL III
MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2

AND
MATH3555 Complex Analysis

OR
MATH3560 Metric Spaces & Topology

AND Twenty-Seven (27) credits from Mathematics Elective Courses
MATH2325 Elementary Number Theory
MATH3555 Complex Analysis
MATH3560 Metric Spaces & Topology
MATH3565 Probability Theory 2
MATH3570 Statistics 2
MATH3575 Topics in Numerical Analysis
MATH3580 Fourier Analysis with Partial Differential Equations
MATH3600 Topics in Discrete & Computational Geometry
MATH3605 Topics in Graph Theory
MATH3590 Research Project in Mathematics
Equivalences between Old and New Mathematics Courses For the Purpose of Fulfilling Major and Minor Requirements.

<table>
<thead>
<tr>
<th>Previous 4-Credit Course</th>
<th>New 3-Credit Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1101 Basic Mathematics I</td>
<td>MATH1152 Sets and Number Systems</td>
</tr>
<tr>
<td>MATH1102 Basic Mathematics II</td>
<td>MATH1141 Introductory Linear Algebra & Analytical Geometry</td>
</tr>
<tr>
<td>MATH1110 Applied Statistics</td>
<td>MATH1230 Introductory Applied Statistics I</td>
</tr>
<tr>
<td>MATH1120 Calculus I</td>
<td>MATH1190 Calculus A (and part of MATH1195)</td>
</tr>
<tr>
<td>MATH1130 Calculus II</td>
<td>MATH1195 Calculus B (and part of MATH2304)</td>
</tr>
<tr>
<td>No Equivalence</td>
<td>MATH1235 Python Programming & Mathematical Software</td>
</tr>
<tr>
<td>MATH2100 Abstract Algebra</td>
<td>MATH2310 Abstract Algebra 1</td>
</tr>
<tr>
<td>MATH2110 Linear Algebra</td>
<td>MATH2315 Linear Algebra 1</td>
</tr>
<tr>
<td>MATH2120 Analysis & Methods I</td>
<td>MATH2321 Real Analysis 1 (and part of MATH3550)</td>
</tr>
<tr>
<td>MATH2130 Ordinary Differential Equations</td>
<td>MATH2305 Differential Equations</td>
</tr>
<tr>
<td>MATH2140 Probability Theory</td>
<td>MATH2330 Probability Theory 1</td>
</tr>
<tr>
<td>MATH2150 Mathematical Statistics</td>
<td>MATH2335 Statistics 1</td>
</tr>
<tr>
<td>MATH3160 Number Theory</td>
<td>MATH2325 Elementary Number Theory</td>
</tr>
<tr>
<td>MATH3100: Multivariate Analysis</td>
<td>No Equivalence</td>
</tr>
<tr>
<td>MATH3120: Numerical Analysis</td>
<td>MATH3575: Introduction to Numerical Analysis</td>
</tr>
<tr>
<td>MATH3130: Optimization Theory</td>
<td>No Equivalence</td>
</tr>
<tr>
<td>MATH3140: Fourier Analysis & PDE</td>
<td>MATH3580: Fourier Analysis with Partial Differential Equations</td>
</tr>
<tr>
<td>MATH3150: Complex Variables 1</td>
<td>MATH3555: Complex Analysis</td>
</tr>
<tr>
<td>MATH3170: Advanced Algebra</td>
<td>MATH3543: Abstract Algebra 2</td>
</tr>
<tr>
<td>MATH3180: Introduction to Topology</td>
<td>MATH3560: Introduction to Metric Spaces</td>
</tr>
<tr>
<td>MATH3190: Matrix Analysis</td>
<td>MATH3545: Linear Algebra 2</td>
</tr>
<tr>
<td>MATH3220: Sampling Theory</td>
<td>No Equivalence</td>
</tr>
<tr>
<td>MATH3300: Mathematics Research Project</td>
<td>MATH3590: Research Project in Mathematics</td>
</tr>
<tr>
<td>MATH3375: Discrete & Computational Geometry</td>
<td>MATH3600: Introduction to in Discrete & Computational Geometry</td>
</tr>
<tr>
<td>MATH3400: Graph Theory</td>
<td>MATH3605: Introduction to Graph Theory</td>
</tr>
<tr>
<td>MATH3450: Statistical Theory 1</td>
<td>MATH3565: Probability Theory 2</td>
</tr>
<tr>
<td>MATH3460: Statistical Theory 2</td>
<td>MATH3570: Statistics 2</td>
</tr>
<tr>
<td>No Equivalence</td>
<td>MATH3620: Financial Mathematics 1</td>
</tr>
<tr>
<td>No Equivalence</td>
<td>MATH3621: Financial Mathematics 2</td>
</tr>
</tbody>
</table>
METEOROLOGY

Through our affiliate institution, the Caribbean Institute for Meteorology & Hydrology, a Major and Minor in Meteorology are offered.

MAJOR IN METEOROLOGY: Course descriptions

LEVEL I
- **METE1110** Introduction to Oceans and Climate
- **METE1125** Meteorological Observations, Instruments & Basic Analysis
- **METE1130** Introduction to Physical Meteorology
- **METE1135** Introduction to Dynamic Meteorology
- **MATH1190** Calculus A
- **MATH1195** Calculus B

LEVEL II
- **METE2110** Atmospheric Thermodynamics (3 Credits)
- **METE2120** Physical Meteorology (3 Credits)
- **METE2100** Dynamic Meteorology I (4 Credits)
- **METE2200** Synoptic Meteorology I (4 Credits)
- **PHYS2400** Mathematical Methods in Physics (3 Credits)

LEVEL III
- **METE3100** Dynamic Meteorology II (4 Credits)
- **METE3200** Synoptic Meteorology II (4 Credits)
- **METE3300** Tropical Meteorology (4 Credits)

AND at LEAST Three (3) Credits from:
- **METE23XX** Hydrometeorology Fundamentals
- **METE35XX** Climate, Biosphere and Ecosystems

MINOR IN METEOROLOGY [Fifteen (15) Level II/III Credits]: Course descriptions

- **METE1110** Introduction to Oceans and Climate
- **METE1125** Meteorological Observations, Instruments & Basic Analysis
- **METE1130** Introduction to Physical Meteorology
- **METE1135** Introduction to Dynamic Meteorology
- **MATH1190** Calculus A
- **MATH1195** Calculus B

- **METE2100** Dynamic Meteorology I (4 Credits)
- **METE2200** Synoptic Meteorology I (4 Credits)

AND Three (3) Credits from:
- **METE2110** Atmospheric Thermodynamics (3 Credits)
- **METE2120** Physical Meteorology (3 Credits)

AND Four (4) Credits from:
- **METE3100** Dynamic Meteorology II (4 Credits)
- **METE3200** Synoptic Meteorology II (4 Credits)
- **METE3300** Tropical Meteorology (4 Credits)
<table>
<thead>
<tr>
<th>OLD 4-CREDIT COURSE</th>
<th>NEW 3-CREDIT COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>METE1200 Oceans and Climate</td>
<td>METE1110 Introduction to Oceans and Climate</td>
</tr>
<tr>
<td>METE1000 Introduction to Physical Meteorology and</td>
<td>METE1130 Introduction to Physical Meteorology</td>
</tr>
<tr>
<td>Weather Observations</td>
<td>METE1125 Meteorological Observations, Instruments</td>
</tr>
<tr>
<td></td>
<td>and Basic Analysis</td>
</tr>
<tr>
<td>METE1100 Introduction to Dynamic Meteorology and</td>
<td>METE1135 Introduction to Dynamic Meteorology</td>
</tr>
<tr>
<td>Weather Systems</td>
<td></td>
</tr>
<tr>
<td>METE1300 Climate Change Education and Awareness</td>
<td>METE1305 Introduction to Climate Change and Society</td>
</tr>
<tr>
<td>METE2000 Physical Meteorology I</td>
<td>METE2110 Atmospheric Thermodynamics</td>
</tr>
<tr>
<td>METE2001 Physical Meteorology II</td>
<td>METE2120 Physical Meteorology</td>
</tr>
</tbody>
</table>

Equivalences Between Old and New Meteorology Courses for the Purpose of Fulfilling Major and Minor Requirements
PHYSICS

The Department of Computer Science, Mathematics & Physics offers a Major and Minor in Physics.

MAJOR IN PHYSICS: Course descriptions

LEVEL I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1200</td>
<td>Physics I: Mechanics of Translational Motion</td>
</tr>
<tr>
<td>PHYS1205</td>
<td>Physics II: Rotation, Waves and Thermodynamics</td>
</tr>
<tr>
<td>PHYS1210</td>
<td>Physics III: Electric Fields, Currents and Circuits</td>
</tr>
<tr>
<td>PHYS1220</td>
<td>Physics IV: Magnetism, Electromagnetic Waves and Optics</td>
</tr>
<tr>
<td>MATH1190</td>
<td>Calculus A</td>
</tr>
<tr>
<td>MATH1195</td>
<td>Calculus B</td>
</tr>
</tbody>
</table>

LEVEL II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS2400</td>
<td>Mathematical Methods in Physics I</td>
</tr>
<tr>
<td>PHYS2405</td>
<td>Mathematical Methods in Physics II</td>
</tr>
<tr>
<td>PHYS2410</td>
<td>Modern Physics</td>
</tr>
<tr>
<td>PHYS2415</td>
<td>Theory of Classical Mechanics</td>
</tr>
<tr>
<td>PHYS2420</td>
<td>Advanced Physics Laboratory I</td>
</tr>
</tbody>
</table>

LEVEL III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3420</td>
<td>Electromagnetic Theory I</td>
</tr>
<tr>
<td>PHYS3480</td>
<td>Theory of Quantum Mechanics</td>
</tr>
<tr>
<td>PHYS3485</td>
<td>Theory of Statistical Mechanics</td>
</tr>
<tr>
<td>PHYS3445</td>
<td>Fundamentals of General Relativity and Cosmology</td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>PHYS3455</td>
<td>Lasers and Optical Systems</td>
</tr>
<tr>
<td>PHYS3460</td>
<td>Physics of Sustainable Energy Systems</td>
</tr>
<tr>
<td>PHYS3465</td>
<td>Electromagnetic Theory II</td>
</tr>
<tr>
<td>PHYS3470</td>
<td>Biological Physics</td>
</tr>
<tr>
<td>PHYS3475</td>
<td>Fundamentals of Solid State Physics</td>
</tr>
<tr>
<td>PHYS3490</td>
<td>Physics One-Semester Research Project</td>
</tr>
<tr>
<td>PHYS3495</td>
<td>Physics Two-Semester Research Project</td>
</tr>
</tbody>
</table>

AND Six (6) Credits From Physics Elective Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELET2215</td>
<td>Microprocessor Systems</td>
</tr>
<tr>
<td>ELET2220</td>
<td>Circuit Simulation and Applications</td>
</tr>
<tr>
<td>ELET2225</td>
<td>Discrete Component Electronics</td>
</tr>
<tr>
<td>ELET2230</td>
<td>Digital Communication Systems I</td>
</tr>
<tr>
<td>ELET2235</td>
<td>Automation Technology and Applications</td>
</tr>
<tr>
<td>ELET2240</td>
<td>Sensor and Actuation Devices</td>
</tr>
<tr>
<td>ELET3215</td>
<td>Microcontroller Technology</td>
</tr>
<tr>
<td>ELET3220</td>
<td>Control Systems</td>
</tr>
<tr>
<td>ELET3230</td>
<td>Essentials of Digital Signal Processing (DSP)</td>
</tr>
<tr>
<td>ELET3235</td>
<td>Digital Communication Systems II</td>
</tr>
<tr>
<td>ELET3240</td>
<td>Digital Communication Systems III</td>
</tr>
<tr>
<td>ELET3250</td>
<td>Biomedical Instrumentation</td>
</tr>
<tr>
<td>ELET3255</td>
<td>Wireless Communications</td>
</tr>
<tr>
<td>ELET3260</td>
<td>Advanced Microprocessors and Systems</td>
</tr>
<tr>
<td>PHYS2425</td>
<td>Computational Methods in Physics</td>
</tr>
<tr>
<td>PHYS3445</td>
<td>Fundamentals of General Relativity and Cosmology</td>
</tr>
<tr>
<td>PHYS3450</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>PHYS3455</td>
<td>Lasers and Optical Systems</td>
</tr>
<tr>
<td>PHYS3460</td>
<td>Physics of Sustainable Energy Systems</td>
</tr>
<tr>
<td>PHYS3465</td>
<td>Electromagnetic Theory II</td>
</tr>
<tr>
<td>PHYS3470</td>
<td>Biological Physics</td>
</tr>
<tr>
<td>PHYS3475</td>
<td>Fundamentals of Solid State Physics</td>
</tr>
<tr>
<td>PHYS3490</td>
<td>Physics One-Semester Research Project</td>
</tr>
<tr>
<td>PHYS3495</td>
<td>Physics Two-Semester Research Project</td>
</tr>
</tbody>
</table>
MINOR IN PHYSICS (Fifteen (15) Credits): [Course descriptions](#)

Twelve Credits (12) Credits From:
- PHYS2400 Mathematical Methods in Physics I
- PHYS2405 Mathematical Methods in Physics II
- PHYS2410 Modern Physics
- PHYS2415 Theory of Classical Mechanics

AND at Most Three (3) Credits From:
- PHYS2420 Advanced Physics Laboratory I
- PHYS2425 Computational Methods in Physics
- PHYS2420 Advanced Physics Laboratory I
- PHYS2425 Computational Methods in Physics
- PHYS3420 Electromagnetic Theory I
- PHYS3445 Fundamentals of General Relativity and Cosmology

Equivalences between Old and New Physics Courses For the Purpose of Fulfilling Major and Minor Requirements.

<table>
<thead>
<tr>
<th>Old Course</th>
<th>New Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1100 Mechanics</td>
<td>PHYS1200 Physics I: Mechanics of Transitional Motion</td>
</tr>
<tr>
<td>PHYS1101 Electricity & Magnetism</td>
<td>PHYS1210 Physics III: Electric Fields, Currents and Circuits</td>
</tr>
<tr>
<td>PHYS1102 Optics, Thermodynamics & Modern Physics</td>
<td>PHYS1205 Physics II: Rotation Waves and Thermodynamics</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics</td>
</tr>
<tr>
<td>PHYS2100 Mathematical Methods in Physics</td>
<td>PHYS2400 Mathematical Methods in Physics I</td>
</tr>
<tr>
<td>PHYS2101 Quantum Mechanics and Special Relativity</td>
<td>PHYS2410 Modern Physics</td>
</tr>
<tr>
<td>PHYS2102 Solid State Physics</td>
<td>PHYS3475 Fundamentals of Solid State Physics</td>
</tr>
<tr>
<td>PHYS2103 Classical Mechanics</td>
<td>PHYS2415 Theory of Classical Mechanics</td>
</tr>
<tr>
<td>PHYS2105 Computational Physics I</td>
<td>PHYS2425 Computational Methods in Physics</td>
</tr>
<tr>
<td>PHYS2106 Advanced Physics/Technology Laboratory I</td>
<td>PHYS2420 Advanced Physics Laboratory I</td>
</tr>
<tr>
<td>PHYS2107 Advanced Physics/Technology Laboratory II</td>
<td>Any Physics Elective</td>
</tr>
<tr>
<td>No Equivalent</td>
<td>PHYS2405 Mathematical Methods in Physics II</td>
</tr>
<tr>
<td>PHYS3100 Quantum Mechanics</td>
<td>PHYS3480 Theory of Quantum Mechanics</td>
</tr>
<tr>
<td>PHYS3101 Electrodynamics</td>
<td>PHYS3420 Electromagnetic Theory I</td>
</tr>
<tr>
<td>PHYS3102 Optics and Lasers</td>
<td>PHYS3455 Laser and Optical Systems</td>
</tr>
<tr>
<td>PHYS3103 Astrophysics</td>
<td>PHYS3445 Fundamentals of General Relativity and Cosmology</td>
</tr>
<tr>
<td>PHYS3105 Statistical Mechanics</td>
<td>PHYS3485 Theory of Statistical Mechanics</td>
</tr>
<tr>
<td>PHYS3106 Physics Research Project</td>
<td>PHYS3490 Physics One-Semester Research Project</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>PHYS3107</td>
<td>Fundamentals of Photovoltaic Systems</td>
</tr>
<tr>
<td>None</td>
<td>PHYS3460 Physics of Sustainable Energy Systems</td>
</tr>
<tr>
<td>None</td>
<td>PHYS3450 Fluid Mechanics</td>
</tr>
<tr>
<td>None</td>
<td>PHYS3465 Electromagnetic Theory II</td>
</tr>
<tr>
<td>None</td>
<td>PHYS3470 Biological Physics</td>
</tr>
<tr>
<td>None</td>
<td>PHYS3495 Physics Two-Semester Research Project</td>
</tr>
</tbody>
</table>
PROGRAMME STRUCTURE

COMPUTER SCIENCE, ELECTRONICS, INFORMATION TECHNOLOGY, MATHEMATICS, SOFTWARE ENGINEERING, PHYSICS AND METEOROLOGY

BSc COMPUTER SCIENCE

LEVEL I (24 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX

AND
9 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (15 Credits)
COMP2210 Mathematics for Computer Science II
COMP2611 Data Structures
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts

AND Thirty (30) Levels II/III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes

OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVEL III (9 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses
BSc INFORMATION TECHNOLOGY

LEVEL I (24 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
AND
9 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (15 Credits)
COMP2611 Data Structures
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering

LEVEL III (9 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ELECTRONICS

LEVEL I (24 CREDITS)
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
ELET1205 Computer-Aided Design
MATH1190 Calculus A

AND
6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (12 Credits)
At Least Twelve (12) Credits from:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensors & Actuation Devices
PHYS2400 Mathematical Methods in Physics

AND at Most Eighteen (18) Credits from:
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc MATHEMATICS

LEVEL I (24 CREDITS)
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming & Mathematical Software

AND
9 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (15 Credits)
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra I
MATH2315 Linear Algebra
MATH2321 Real Analysis I

LEVEL III (12 Credits)
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II

AND
MATH3555 Complex Analysis

OR
MATH3560 Metric Spaces & Topology

AND 3 Credits from Mathematics Elective Courses

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSC MATHEMATICS (DOUBLE)

LEVEL I (24 CREDITS)
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1230 Introductory Applied Statistics I
MATH1235 Python Programming & Mathematical Software

AND 6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (21 Credits)
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra I
MATH2315 Linear Algebra
MATH2321 Real Analysis I
MATH2330 Probability Theory I
MATH2335 Statistics I

LEVEL III (12 Credits)
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II

AND
MATH3555 Complex Analysis

OR
MATH3560 Metric Spaces & Topology

AND 27 Credits from Levels II/III Mathematics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1066 Exposition For Academic Purposes

OR
FOUN1008 An Introduction to Professional Writing

AND
FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

* A student may substitute one of these with a Foreign Language course.
BSc METEOROLOGY

LEVEL I (24 CREDITS)
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B

AND
6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (17 Credits)
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2100 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 – Mathematical Methods in Physics I

LEVEL III (12 Credits)
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere and Ecosystems

OR 4 Credits from:
METE3400 Weather Radar and Satellites#

AND Twenty-Seven (27) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

#4 Credit Courses
BSc PHYSICS

LEVEL I (24 CREDITS)
PHYS1200 Physics I: Mechanics of Transitional Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
MATH1190 Calculus A
MATH1195 Calculus B

AND
9 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (15 Credits)
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (9 Credits)
PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics

AND at least Six (6) Credits from Physics Elective Courses

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc COMPUTER SCIENCE DOUBLE

LEVEL I (24 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX

AND
9 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (18 Credits)
COMP2210 Mathematics for Computer Science II
COMP2611 Data Structures
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2235 Networks I

LEVEL III (18 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
COMP3360 Networks II

AND
COMP3490 Research Project in Computer Science

AND
Three (3) Level III credits from Computer Science

OR
COMP3495 Major Research Project in Computer Science

OR
COMP3499 Group Research Project in Computer Science

AND
Three (3) Level III credits from Computer Science

AND at least Twenty-Four (24) Credits from Level II/III Computer Science Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc SOFTWARE ENGINEERING (UWICIIT)

LEVEL I (30 Credits)
- SWEN1000 An Introduction to Computing I
- SWEN1001 An Introduction to Object Oriented Programming
- SWEN1002 Computing in Society
- SWEN1003 Current and Future Trends in Computing for Software Engineers
- SWEN1004 Mathematics for Software Engineers
- SWEN1005 Mobile Web Programming
- SWEN1006 Research Methods for Software Engineers
- SWEN1007 Software Engineering Essentials
- SWEN1008 Technical Writing for Software Engineers
- SWEN1009 An Introduction to Computing II

LEVEL II (36 Credits)
- SWEN2000 An Introduction to Requirements Engineering
- SWEN2001 An Introduction to Software Engineering
- SWEN2002 An Introduction to the Analysis of Algorithms
- SWEN 2003 Computer Networking & Security
- SWEN2004 Computer Organization
- SWEN2005 Database Systems
- SWEN2006 Discrete Mathematics for Software Engineers
- SWEN2007 Object Oriented Design and Implementation
- SWEN 2011 Chinese Language & IT
- SWEN 2013 Elementary Chinese Culture and Language
- SWEN 2014 Intermediate Chinese Culture and Language
- CHIN2005 Beginner Chinese Language

LEVEL III (24 Credits)
- SWEN3000 Application Development for IOS Devices
- SWEN3001 Android Application Development I
- SWEN3002 Android Application Development II
- SWEN3003 Web & Mobile Application Development I
- SWEN3004 Web & Mobile Application Development II
- SWEN3120 Software Architecture
- SWEN3145 Software Modelling
- SWEN3165 Software Testing

LEVEL IV (24 Credits)
- SWEN4001 Advanced Database Systems
- SWEN4XXX Software Engineering Capstone Project
- SWEN4XXX Project Management for Software Engineering
- SWEN4XXX IT Certification I
- SWEN4XXX Internship in Computing I
- SWEN4XXX Internship in Computing II

AND 6 CREDITS: FOUNDATION COURSES
- FOUN1006 Exposition For Academic Purposes
- FOUN 1101 Caribbean Civilization

* course taught in China
† six-credit course
‡ The two required UWI Foundation Courses must be completed by the end of Year 2
BSc COMPUTER SCIENCE AND ELECTRONICS

LEVEL I (33 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
ELET1205 Computer-Aided Design
MATH1190 Calculus A

LEVELS II & III (60 CREDITS)

LEVEL II (15 Credits)
COMP2210 Mathematics for Computer Science II
COMP2611 Data Structures
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts

AND at Least Twelve (12) Credits from:
ELET2215 Microcontroller Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensors & Actuation Devices
PHYS2400 Mathematical Methods in Physics

LEVEL III (9 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND at Most Eighteen (18) Credits from:
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc COMPUTER SCIENCE AND MATHEMATICS

LEVEL I (30 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1252 Sets and Number Systems
MATH1235 Python Programming & Mathematical Software

LEVELS II & III (60 CREDITS)

LEVEL II (30 Credits)
COMP2210 Mathematics for Computer Science II
COMP2611 Data Structures
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra I
MATH2315 Linear Algebra
MATH2321 Real Analysis I

LEVEL III (21 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II
AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces & Topology

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND 3 Credits from Mathematics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc COMPUTER SCIENCE AND METEOROLOGY

LEVEL I (33 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere and Ecosystems

OR 4 Credits from:
METE3400 Weather Radar and Satellites#

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

#4 Credit Courses

LEVEL II (32 Credits)
COMP2210 Mathematics for Computer Science II
COMP2611 Data Structures
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2100 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 – Mathematical Methods in Physics I

LEVEL III (21 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#
BSc COMPUTER SCIENCE AND PHYSICS

LEVEL I (30 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
PHYS1200 Physics I: Mechanics of Transitional Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
MATH1190 Calculus A
MATH1195 Calculus B

LEVELS II & III (60 CREDITS)

LEVEL II (30 Credits)
COMP2210 Mathematics for Computer Science II
COMP2611 Data Structures
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (18 Credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND at least Six (6) Credits from Physics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ELECTRONICS AND INFORMATION TECHNOLOGY

LEVEL I (30 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
MATH1190 Calculus A

LEVELS II & III (60 CREDITS)

LEVEL II (15 credits)
COMP2611 Data Structures
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering

AND At Least Twelve (12) Credits from:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensors & Actuation Devices
PHYS2400 Mathematical Methods in Physics

LEVEL III (9 credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND at Most Eighteen (18) Credits from:
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ELECTRONICS AND MATHEMATICS

LEVEL I (30 CREDITS)
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1141 Introductory Linear Algebra & Analytical Geo.
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming & Mathematical Software

LEVELS II & III (60 CREDITS)

LEVEL II (15 Credits)
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra I
MATH2315 Linear Algebra
MATH2321 Real Analysis

AND At Least Twelve (12) Credits from:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensors & Actuation Devices
PHYS2400 Mathematical Methods in Physics

LEVEL III (12 Credits)
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II

AND
MATH3555 Complex Analysis

OR
MATH3560 Metric Spaces & Topology

AND at Most Eighteen (18) Credits from:
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

AND 3 Credits from Levels II and III
Mathematics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ELECTRONICS AND METEOROLOGY

LEVEL I (33 CREDITS)
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B

LEVELS II & III (63 CREDITS)

LEVEL II (17 Credits)
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2100 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 – Mathematical Methods in Physics I

AND At Least Twelve (12) Credits from:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensors & Actuation Devices

#4 Credit Courses

LEVEL III (12 Credits)
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#

AND at Most Eighteen (18) Credits from:
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere and Ecosystems

OR 4 Credits from:
METE3400 Weather Radar and Satellites#

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ELECTRONICS AND PHYSICS

LEVEL I (30 CREDITS)
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
PHYS1200 Physics I: Mechanics of Transitional Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
MATH1190 Calculus A
MATH1195 Calculus B

LEVELS II & III (60 CREDITS)

LEVEL II (15 Credits)
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

AND At Least Twelve (12) Credits from:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensors & Actuation Devices

LEVEL III (9 Credits)
PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics

AND at Most Eighteen (18) Credits from:
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

AND at least Six (6) Credits from Levels II and III
Physics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY AND MATHEMATICS

LEVEL I (30 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming & Mathematical Software

LEVELS II & III (60 CREDITS)

LEVEL II (30 Credits)
COMP2611 Data Structures
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra I
MATH2315 Linear Algebra
MATH2321 Real Analysis I

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Electives Courses

AND 3 Credits from Mathematics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVEL III (21 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II

AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces & Topology

AND
FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY AND METEOROLOGY

LEVEL I (33 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B

LEVELS II & III (60 CREDITS)

LEVEL II (32 Credits)
COMP2611 Data Structures
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2100 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 – Mathematical Methods in Physics I

LEVEL III (21 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere and Ecosystems

OR 4 Credits from:
METE3400 Weather Radar and Satellites#

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

#4 Credit Courses
BSc INFORMATION TECHNOLOGY AND PHYSICS

LEVEL I (30 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
PHYS1200 Physics I: Mechanics of Transitional Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
MATH1190 Calculus A
MATH1195 Calculus B

LEVELS II & III (60 CREDITS)

LEVEL II (30 Credits)
COMP2611 Data Structures
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (18 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND at least Six (6) Credits from Physics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc MATHEMATICS AND METEOROLOGY

LEVEL I (27 CREDITS)
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1195 Calculus B
MATH1152 Sets and Number Systems
MATH1235 Python Programming & Mathematical Software
METE1110 Introduction to Oceans & Climate
METE1125 Meteorological Observations, Instruments and Basic Analyses
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology

LEVELS II & III (63 CREDITS)
LEVEL II (32 Credits)
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra I
MATH2315 Linear Algebra
MATH2321 Real Analysis I
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2100 Dynamic Meteorology I #
METE2200 Synoptic Meteorology I #
PHYS2400 – Mathematical Methods in Physics I

LEVEL III (24 Credits)
MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
METE3100 Dynamic Meteorology II #
METE3200 Synoptic Meteorology II#
METE3300 Tropical Meteorology#
AND
MATH3555 Complex Analysis
OR
MATH3560 Introduction to Metric Spaces and Topology

AND 3 Credits from Mathematics Elective Courses

AND at LEAST Three (3) Credits from:
METE23XX Hydrometeorology Fundamentals
METE35XX Climate, Biosphere and Ecosystems

OR 4 Credits from:
METE3400 Weather Radar and Satellites#

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

4-Credit Courses
BSc MATHEMATICS AND PHYSICS

LEVEL I (24 CREDITS)
MATH 1141 Introductory Linear Algebra & Analytical Geometry
MATH 1190 Calculus A
MATH 1195 Calculus B
MATH 1152 Sets and Number Systems
MATH 1235 Python Programming & Mathematical Software
PHYS 1200 Physics I: Mechanics of Transitional Motion
PHYS 1205 Physics II: Rotation, Waves and Thermodynamics
PHYS 1210 Physics III: Electric Fields, Currents and Circuits

LEVELS II & III (60 CREDITS)

LEVEL II (30 Credits)
MATH 2304 Multivariable Calculus
MATH 2305 Differential Equations
MATH 2310 Abstract Algebra I
MATH 2315 Linear Algebra
MATH 2321 Real Analysis I
PHYS 2400 Mathematical Methods in Physics I
PHYS 2405 Mathematical Methods in Physics II
PHYS 2410 Modern Physics
PHYS 2415 Theory of Classical Mechanics
PHYS 2420 Advanced Physics Laboratory I

AND
MATH 3555 Complex Analysis
OR
MATH 3560 Metric Spaces & Topology

AND 3 Credits from Mathematics Elective Courses

AND at least Six (6) Credits from Physics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
FOUN 1006 Exposition For Academic Purposes
OR
FOUN 1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN 1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc METEOROLOGY AND PHYSICS

LEVEL I (27 CREDITS)
- METE1110 Introduction to Oceans & Climate
- METE1125 Meteorological Observations, Instruments and Basic Analyses
- METE1130 Introduction to Physical Meteorology
- METE1135 Introduction to Dynamic Meteorology
- PHYS1200 Physics I: Mechanics of Transitional Motion
- PHYS1205 Physics II: Rotation, Waves and Thermodynamics
- PHYS210 Physics III: Electric Fields, Currents and Circuits
- MATH1190 Calculus A
- MATH1195 Calculus B

LEVELS II & III (60 CREDITS)

LEVEL II (29 Credits)
- METE2110 Atmospheric Thermodynamics
- METE2120 Physical Meteorology
- METE2100 Dynamic Meteorology I #
- METE2200 Synoptic Meteorology I #
- PHYS2400 Mathematical Methods in Physics I
- PHYS2405 Mathematical Methods in Physics II
- PHYS2410 Modern Physics
- PHYS2415 Theory of Classical Mechanics
- PHYS2420 Advanced Physics Laboratory I

AND at LAST Three (3) Credits from:
- METE23XX Hydrometeorology Fundamentals
- METE35XX Climate, Biosphere and Ecosystems

OR 4 Credits from:
- METE3400 Weather Radar and Satellites#

AND at least Six (6) Credits from Physics Elective Courses

AND 9 CREDITS: FOUNDATION COURSES
- FOUN1006 Exposition For Academic Purposes
- FOUN1008 An Introduction to Professional Writing

AND
- *FOUN 1101 Caribbean Civilization*
- *FOUN1301 Law, Economy, Governance and Society*

* A student may substitute one of these with a Foreign Language course.

LEVEL III (21 Credits)
- METE3100 Dynamic Meteorology II #
- METE3200 Synoptic Meteorology II#
- METE3300 Tropical Meteorology#
- PHYS3420 Electromagnetic Theory I
- PHYS3480 Theory of Quantum Mechanics
- PHYS3485 Theory of Statistical Mechanics

#4-Credit Courses

215
BSc COMPUTER SCIENCE WITH MEDICAL ELECTRONICS

LEVEL I (27 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics

LEVELS II & III (60 CREDITS)

LEVEL II (21 credits)
COMP2210 Mathematics for Computer Science II
COMP2611 Data Structures
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
ELET2225 Discrete Component Electronics
ELET2240 Sensors & Actuation Devices

LEVEL III (18 credits)
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3250 Biomedical Instrumentation

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc ELECTRONICS WITH MEDICAL ELECTRONICS

LEVEL I (24 CREDITS)
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1190 Calculus A

AND
6 Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (6 Credits)
ELET2225 Discrete Component Electronics
ELET2240 Sensors & Actuation Devices

AND At Least Twelve (12) Credits from:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
PHYS2400 Mathematical Methods in Physics

LEVEL III (9 Credits)
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3250 Biomedical Instrumentation

AND at Most Eighteen (18) Credits from:
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc INFORMATION TECHNOLOGY WITH MEDICAL ELECTRONICS

LEVEL I (27 CREDITS)
COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics

LEVELS II & III (60 CREDITS)

LEVEL II (21 Credits)
COMP2611 Data Structures
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
ELET2225 Discrete Component Electronics
ELET2240 Sensors & Actuation Devices

LEVEL III (18 Credits)
COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3250 Biomedical Instrumentation

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
BSc PHYSICS WITH MEDICAL ELECTRONICS

LEVEL I (27 CREDITS)
PHYS1200 Physics I: Mechanics of Transitional Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
MATH1190 Calculus A
MATH1195 Calculus B

LEVELS II & III (60 CREDITS)

LEVEL II (21 Credits)
ELET2225 Discrete Component Electronics
ELET2240 Sensors & Actuation Devices
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (18 Credits)
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3250 Biomedical Instrumentation
PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics

AND at least Six (6) Credits from Physics Elective Courses

AND Fifteen (15) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular Course.

AND 9 CREDITS: FOUNDATION COURSES
FOUN1006 Exposition For Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing

AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.
COMPUTER SCIENCE & INFORMATION TECHNOLOGY COURSES

PRELIMINARY COMPUTER COURSES

COMP0001 - PRELIMINARY COMPUTER SCIENCE I (6 Credits)
Pre-requisite: None

Syllabus: Fundamentals of Information Technology; Relating IT and other Computing disciplines. Distinguish between data and information; Fundamentals of Computer Architecture The components of computer-based systems; Functional components of a computer system (characteristics, performance and interactions Problem Solving with Computers; the problem solving process; the development and use of algorithms.

Teaching: Four (4) lectures, One (1) tutorial, One (1) 2-hour laboratory per week

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory Exercises</td>
<td>20%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hrs)</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP0002 - PRELIMINARY COMPUTER SCIENCE II (6 Credits)
Pre-requisite: None

Syllabus: Data structures; Using abstract data types (ADTs); Basic algorithms for sorting and Searching; Software engineering; The software development life cycle Methods, processes, tools and techniques used in software engineering Operating systems and networks; Functions of operating systems Incorporation of networking technology and applications in operating systems Use of information technology tools; Using productivity tools to solve real-life problems Presenting information in an appropriate manner.

Teaching: Four (4) lectures, One (1) tutorial, One (1) 2-hour laboratory per week

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory Exercises</td>
<td>20%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hrs)</td>
<td>60%</td>
</tr>
</tbody>
</table>
LEVEL I COMPUTER SCIENCE COURSES

COMP1205 - COMPUTING I (3 Credits)

Pre-requisite: None
Anti-requisite: COMP1105 Computer Programming I

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Test(s)/Assignment(s)</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP1210 - COMPUTING II (3 Credits)

Pre-requisite: COMP1205 Computing I (or COMP1105 Computer Programming I)
Anti-requisite: COMP1115 Computer Programming II

Syllabus: Introduction to Objects and Classes, Fundamental Algorithms for Searching and Sorting, Randomness and Recursion, Data Types, Data Structures, Abstract Data Types, File Processing.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Test(s)/Assignment(s)</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP1180 – MATHEMATICS FOR COMPUTER SCIENCE I (3 Credits)

Pre-requisite: [(CAPE Pure Mathematics Unit 1 OR Preliminary Mathematics 1) AND (CAPE Pure Mathematics Unit 2 OR Preliminary Mathematics 2)] OR Equivalent
Anti-requisite: MATH1101 Basic Mathematics I

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:
- In-course Test(s)/Assignment(s) 40%
- Final Theory Examination 60%

COMP1215 - UNIX (3 Credits)

Pre-requisite: None
Anti-requisite: COMP1125 Introduction to UNIX

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:
- In-course Test(s)/Assignment(s) 40%
- Final Theory Examination 60%

COMP1170 – ENTREPRENEURSHIP FOR COMPUTER SCIENTISTS (3 Credits)

Pre-requisite: None
Anti-requisite: COMP1130 Web Technology Fundamentals

Syllabus: Entrepreneurship. The importance of technology entrepreneurship. Life stories of successful technology entrepreneurs. How the Internet and e-business applications have changed the way that we communicate and provide entrepreneurial opportunities. How the use of e-business has improved the efficiency of business processes. Privacy, security and legal issues associated with the Internet and entrepreneurship. Market research. Techniques and statistical methods for market

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s) 40%
Final Theory Examination 60%

LEVEL II COMPUTER SCIENCE COURSES

COMP2210 – MATHEMATICS FOR COMPUTER SCIENCE II (3 Credits)

Pre-requisite: COMP1180 Mathematics for Computer Science I (or MATH1101 Basic Mathematics I)

Anti-requisite: COMP2105 Discrete Mathematics

Syllabus: Logic; Proofs; Mathematical Induction; Number Theory; Algorithms; Relations; Elementary Combinatorics; Discrete Probability; Elementary Graph Theory; Algebraic Structures; Modeling computation.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Test(s)/Assignment(s) 40%
Final Theory Examination 60%

COMP2220 - COMPUTER SYSTEM ARCHITECTURE (3 Credits)

Pre-requisite: [COMP1180 Mathematics for Computer Science I (or MATH1101 Basic Mathematics I)

AND
COMP1210 Computing II (or COMP1115 Computer Programming II)]

OR
[ELET1210 Digital Electronics I (or ELET1110 Digital Electronics)]
Anti-requisite: COMP2125 Computer Architecture

Syllabus: Basic Computer Architecture; Computer Memory; Computer Arithmetic; The Instruction Cycle; Instructions Sets and Assembly Language Programming; System Interconnection; Instruction Sets; Addressing Modes; CPU Structure and Function (Register organization, instruction cycle, instruction pipelining); RISC vs. CISC Architecture.

Teaching: Two (2) hours of lectures and two (2) hour of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP2225 - SOFTWARE ENGINEERING (3 Credits)

Pre-requisite: COMP1210 Computing II (or COMP1115 Computer Programming II)

Anti-requisite: COMP2145 Software Engineering I

Syllabus: Teams and Tools; Software Development (Requirements analysis, Specifications, design, implementation validation and verification, maintenance); Project and Product Documentation (User manuals, internal documentation); Software Process Models; Agile Development Methodologies; Project Management.

Teaching: Two (2) hours of lectures and two (2) hour of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP2232 – OBJECT ORIENTED PROGRAMMING CONCEPTS (3 Credits)

Pre-requisite: COMP1210 Computing II (or COMP1115 Computer Programming II)

Anti-requisite: COMP2160 Object oriented Programming

Syllabus: Object-Oriented Design; Introduction to UML; Structure of an object-oriented class (Classes and Objects, Encapsulation and Information Hiding, Message Passing); Class Design (Inheritance, Composition, Constructors, Polymorphism, Abstract Classes); Error Handling and Testing (Exceptions, Assertions, Design By Contract).
Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

- In-course Test(s)/Assignment(s) 40%
- Final Theory Examination 60%

COMP2235 - NETWORKS I (3 Credits)

Pre-requisite: COMP1210 Computing II (or COMP1115 Computer Programming II)

AND

COMP1215 UNIX (or COMP1125 Introduction to Unix)

Anti-requisite: COMP2150 Computer Networks I

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

- In-course Test(s)/Assignment(s) 40%
- Final Theory Examination 60%

COMP2245 – WEB DEVELOPMENT CONCEPTS, TOOLS AND PRACTICES (3 Credits)

Pre-requisite: COMP1170 Entrepreneurship for Computer Scientists (or COMP1130 Web Technology Fundamentals)

OR

SWEN1005 Mobile Web Programming

Anti-requisite: COMP2155 - Building Web Applications

Syllabus: Overview of Web concepts (TCP/IP, HTTP and HTTPS); The client-server computing model; Web browser architecture; User interface: Visual design and user interaction concepts; Web development stack; Single-, two- and three-tier application architectures; Data validation and verification; Server and application configuration; Relative and absolute paths; Web-accessible directories; Server and application configuration directives; Designing and implementing a
three-tier Web application architecture; Client-side programming using JavaScript; Server-Side Scripting.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP2410 – COMPUTING IN THE DIGITAL AGE (3 Credits)

Pre-requisite: COMP1210 Computing II (or COMP1115 Computer Programming II)

Anti-requisite: None

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP2415 – INFORMATION TECHNOLOGY ENGINEERING (3 Credits)

Pre-requisite: COMP1210 Computing II (or COMP1115 Computer Programming II)

Anti-requisite: None

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:
COMP2611 – DATA STRUCTURES (3 Credits)

Pre-requisite: COMP1210 Computing II (or COMP1115 Computer Programming II)
AND
COMP1215 UNIX (COMP1125 Introduction to Unix)

Anti-requisite: COMP2115 Information Structures

Syllabus: Abstract Data Types (Lists, Queues, Double-ended queues, Priority queues, Stacks); Dictionaries (Binary search trees, AVL-trees, Red-Black trees, Splay trees, Binary heaps, B-trees); Sets; Vectors; Hashing and collision resolution schemes; Sorting algorithms; Searching techniques; Data compression.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP2950 - COMPUTER SCIENCE ELECTIVE (3 Credits)

Pre-requisites: None

Syllabus: An advanced course in Computer Science taken as an exchange student at an approved institution and pre-approved by the Dean.

LEVEL III COMPUTER SCIENCE COURSES

COMP3310 - ALGORITHMS (3 Credits)

Pre-requisites: COMP2210 Mathematics for Computer Science II (or COMP2105 Discrete Mathematics)
AND
COMP2611 Data Structures (or COMP2115 Information Structures)

Anti-requisite: COMP3180 Algorithm Design and Analysis
Syllabus: Analysis of Algorithms: Time and Space Complexities; Algorithm Design Techniques (Brute-force, Divide and Conquer, Preprocessing, Dynamic Programming, Greedy Algorithms); Limits of Computability (Lower Bounds, Tractable and Intractable Problems, Dealing with NP-Completeness); Empirical measurements of performance.

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Tests/Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3320 - DESIGN PRINCIPLES OF OPERATING SYSTEMS (3 Credits)

Pre-requisites: COMP2220 Computer System Architecture (or COMP2125 Computer Architecture) AND COMP2611 Data Structures (or COMP2115 Information Structures)

Anti-requisite: COMP3100 Operating Systems

Syllabus: Characteristics of Modern Operating Systems; Operating System Structure and Architecture; Process Management (processes and threads, process creation and termination, process synchronization, CPU scheduling, deadlocks); Memory Management (memory allocation schemes, memory partitioning, paging, virtual memory, segmentation); File management (file organization, file system implementation, file system examples, mass storage; Device Management (I/O devices, device drivers, I/O design issues, disk-scheduling); Protection and Security (security threats (program and network threats), protection mechanisms, trusted systems).

Teaching: Two (2) hours of lectures and One (1) hour of tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Tests/Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3330 – DATABASE MANAGEMENT SYSTEMS I (3 Credits)

Pre-requisite: COMP2611 Data Structures (or COMP2115 Information Structures)

Anti-requisite: COMP3160 Database Management Systems

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Test(s)/Assignment(s)</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3360 - NETWORKS II (3 Credits)

Pre-requisite: COMP2235 Networks I (or COMP2150 Computer Networks 1)

Anti-requisite: COMP3155 Computer Networks II

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Test(s)/Assignment(s)</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3365 - NETWORKS III (3 Credits)

Pre-requisite: COMP3360 Networks II (or COMP3155 Computer Networks 2)

Anti-requisite: None

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:
- In-course Test(s)/Assignment(s) 40%
- Final Theory Examination 60%

COMP3370 - SOFTWARE ENGINEERING ON A LARGE SCALE (3 Credits)

Pre-requisites: COMP2225 Software Engineering (or COMP2145 Software Engineering I)

Anti-requisite: COMP3140 Software Engineering II

Syllabus: The Challenges of Engineering Large Systems; Introduction to Modelling and Class Diagrams; Reverse engineering; Software Architecture; Approaches to Project Management; Project Selection and Feasibility Analysis; Project Cost Estimation; Planning, Resource Scheduling and Control Techniques; Software Validation and Deployment; The Team Environment.

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:
- In-course Tests/Assignments 40%
- Final Theory Examination (2 hours) 60%

COMP3375 - SOFTWARE TESTING AND QUALITY (3 Credits)

Pre-requisites: COMP2225 Software Engineering (or COMP2145 Software Engineering I)

Anti-requisite: COMP3165 Software Quality Assurance

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:
- In-course Tests/Assignments 40%
- Final Theory Examination (2 hours) 60%
COMP3385 - FRAMEWORK DESIGN FOR ADVANCED WEB DEVELOPMENT (3 Credits)

Pre-requisites: COMP245 Web Development Concepts, Tools and Practices (or COMP2155 - Building Web Applications)

Anti-requisite: COMP 3170 Web-based Applications

Syllabus: Design Patterns (Design patterns and principles, Design Patterns for flexible object programming, Database patterns, Design patterns in JavaScript);

Version Control (Configuring and using open source version control systems); Web Services (Introduction to SOAP and XML-RPC, The REST architectural style, RESTful web services);

API Design (The API design process, Characteristics and guidelines for API design);

Client-side JavaScript framework design (Framework styles: structure, helper methods, plugins etc., Prototype classes, inheritance, class implementation, Selector Engines, Animations and touch, Cross-domain requests with AJAX, Feature detection, Chained APIs);

Server-side framework design (Framework styles: layered, pipe-and-filter, Common framework features: scaffolding, internationalization, fall-back data validation, session management; Web services; Controllers; Data abstraction; Templating systems (themes); security; authentication; error handling).

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Tests/Assignments</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3412 - SCALABLE ENTERPRISE WEB APPLICATIONS (3 Credits)

Pre-requisites: COMP3330 Database Management Systems I (or COMP3160 Database Management Systems)

AND

COMP3385 Framework Design for Advanced Web Development

Anti-requisite: None

Syllabus: Design patterns for flexible object-oriented programming; Enterprise design patterns; Good and bad design and coding practices; Continuous integration; Designing scalable web applications (Scalability
patterns and best practices; Scalability challenges, Scalability testing and anti-patterns; Caching for web applications (Caching concepts, design, caching anti-patterns and strategies); Enterprise Web Applications Security; Enterprise Web Application Testing; Application Deployment to the cloud; Performance of Enterprise Web Applications; Web analytics-based performance improvement.

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Tests/Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3415 – DATABASE MANAGEMENT SYSTEMS II (3 Credits)

Pre-requisite: COMP3330 Database Management Systems I (or COMP3160 Database Management Systems)

Anti-requisite: None

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3420 - COMPUTER GRAPHICS (3 Credits)

Pre-requisites: COMP2611 Data Structures (or COMP2115 Information Structures)

Anti-requisite: COMP3260 Computer Graphics I

Syllabus: Raster graphics; Coordinate systems and transformations; The viewing frustum; The graphics pipeline and toolkits; Clipping and culling; Lighting and shadows; Transparency and blending; Texture mapping; Local shading models; Environment mapping techniques; Shaders; Animation and particles; Portable Network Graphics (PNG) programming; OpenGL programming.

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.
Method of Examination:

In-course Tests/Assignments 40%
Final Theory Examination (2 hours) 60%

COMP3425 - MOBILE APPLICATIONS FOR iOS DEVICES (3 Credits)

Pre-requisites: COMP2611 Data Structures (or COMP2115 Information Structures)
AND
COMP2225 Software Engineering (or COMP2145 Software Engineering 1)

Anti-requisite:

Syllabus: Program Development on the XCode IDE; Swift programming; Xcode and Interface Builder; Cocoa Design Patterns; Views and the View Hierarchy; Memory Management; Text Input and Delegation; View Controllers; Interaction with UIControls; UITableView and UITableViewDataSource; Orientation and iOS Device Sensors; Testing and Debugging.

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

In-course Tests/Assignments 40%
Final Theory Examination (2 hours) 60%

COMP3435 – USER-INTERFACE DESIGN (3 Credits)

Pre-requisites: COMP2611 Data Structures (or COMP2115 Information Structures)
AND
COMP2225 Software Engineering (or COMP2145 Software Engineering 1)

Anti-requisite: COMP3220 Human Computer Interaction

Syllabus: Relationship to computer science and software engineering; Influences on interface design; General models and guidelines; Methods of designing interfaces; Software and hardware interface implementation; Mechanisms of evaluation; Future directions of user interface design.

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.
Method of Examination:

<table>
<thead>
<tr>
<th>Course</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Tests/Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3440 – E-COMMERCE (3 Credits)

Pre-requisites: COMP2245 Web Development Concepts, Tools and Practices (or COMP2155 - Building Web Applications)

Anti-requisite: COMP 3210 Electronic Commerce

Syllabus: Introduction to e-commerce; Definition of e-commerce, e-business, m-commerce and e-governance; Advantages/disadvantages of e-commerce; Waves of e-commerce; SWOT analysis; business objectives and international issues facing e-commerce; Planning e-commerce initiatives; Identifying products and services; Business plans; E-Commerce legislation and Internet law; Borders and jurisdiction; Website design, usability, evaluation and creation; User interface design; Internetworking and the world wide web; client-side programming; server-side programming; Processing payments and order fulfillment; Securing e-commerce initiatives; Computer, server and communication channel security; Marketing website and promoting products and services; Revenue models, marketing strategies, customer relationship models and web advertising.

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Course</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Tests/Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3445 – COMPUTER INFORMATION SYSTEMS (3 Credits)

Pre-requisites: COMP2225 Software Engineering (or COMP2145 Software Engineering I) AND COMP2245 Web Development Concepts and Practices (or COMP2155 - Building Web Applications)

Anti-requisite: COMP 3115 Information Systems

Syllabus: Definitions of information and system concepts; IS frameworks; Types of information systems; Information systems in society, business and industry; Software issues and trends: Databases and business intelligence; E-business and mobile commerce; ICT in e-business and business process performance; The personal and social impact of computers; Network and telecommunication systems; Societal and ethical issues relating to information systems; Enterprise, information and decision support systems; Knowledge management systems, knowledge management workers; artificial intelligence, expert systems; and virtual reality; Characteristics of information systems professionals; information
system careers; Information and specification; design, implementation and re-engineering of
information systems; Systems theory; decision support; information systems strategies; role of
information and IT; and role of people using, developing and managing systems; Information and
organisational systems; ICT Micro enterprises and entrepreneurship; digital divide; the informal sector;
Health information systems.

Teaching: Two (2) hours of lectures and One (1) hour of tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Tests/Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3450 – FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE (3 Credits)

Pre-requisite: COMP2210 Mathematics for Computer Science II (or COMP2105 Discrete Mathematics)

AND

COMP2611 Data Structures (or COMP2115 Information Structures)

Anti-requisite: COMP3125 Artificial Intelligence

reasoning.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-course Test(s)/Assignment(s)</td>
<td>40%</td>
</tr>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3490 – RESEARCH PROJECT IN COMPUTER SCIENCE (3 Credits)

Pre-requisite: None

Anti-requisite: COMP3910 Research Project
Syllabus: This course provides students with the opportunity to develop a research project to solve a real-world or research-based problem. Students are given the opportunity to embark on a project that uses the skills learned during Computer Science courses. This course provides students with an opportunity to develop their research skills by collaborating with a Computer Science faculty member.

Teaching: Students are required to meet regularly with their supervisors to discuss their research projects.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Proposal</td>
<td>20%</td>
</tr>
<tr>
<td>Final Presentation</td>
<td>20%</td>
</tr>
<tr>
<td>Final Report</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3495 – MAJOR RESEARCH PROJECT IN COMPUTER SCIENCE (6 Credits)

Pre-requisite: None

Anti-requisite: COMP3920 Computer Science Major Research Project

Syllabus: This course provides students with the opportunity to develop a research project to solve a real-world or research-based problem. Students are given the opportunity to embark on a project that uses the skills learned during Computer Science courses. They will take this course from Semester I through Semester II. This course provides students with an opportunity to develop their research skills by collaborating with a Computer Science faculty member.

Teaching: Students are required to meet regularly with their supervisors to discuss their research projects.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Proposal</td>
<td>20%</td>
</tr>
<tr>
<td>Final Presentation</td>
<td>20%</td>
</tr>
<tr>
<td>Final Report</td>
<td>60%</td>
</tr>
</tbody>
</table>

COMP3499 – GROUP RESEARCH PROJECT IN COMPUTER SCIENCE (3 Credits)

Pre-requisite: None

Anti-requisite: COMP3930 Computer Science Group Research Project

Syllabus: This course provides students with the opportunity to develop a research project to solve a real-world or research-based problem. Students are given the opportunity to embark on a project that uses the skills learned during Computer Science courses. They will complete the project in groups
ranging from 2 to 4 persons. This course provides students with an opportunity to develop their research skills by collaborating with a Computer Science faculty member.

Teaching: Students are required to meet regularly with their supervisors to discuss their research projects.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Proposal</td>
<td>20%</td>
</tr>
<tr>
<td>Final Presentation</td>
<td>20%</td>
</tr>
<tr>
<td>Final Report</td>
<td>60%</td>
</tr>
</tbody>
</table>
SOFTWARE ENGINEERING

LEVEL I SOFTWARE ENGINEERING COURSES

SWEN1000 AN INTRODUCTION TO COMPUTING I (3 Credits)

Pre-requisite: None

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

- In-course Test(s)/Assignment(s) 50%
- Final Theory Examination 50%

SWEN1001 AN INTRODUCTION TO OBJECT ORIENTED PROGRAMMING (3 Credits)

Pre-requisite: SWEN1000 An Introduction to Computing I
SWEN1009 An Introduction to Computing II

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

- In-course Test(s)/Assignment(s) 50%
- Final Theory Examination 50%

SWEN1002 COMPUTING IN SOCIETY (3 Credits)

Pre-requisite: None

Anti-requisite: None

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

- In-course Test(s)/Assignment(s) 50%
- Final Theory Examination 50%

SWEN1003 CURRENT AND FUTURE TRENDS IN COMPUTING FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: None

Anti-requisite: None

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.
Method of Examination:

- In-course Test(s)/Assignment(s)/Research paper: 70%
- Final Theory Examination: 30%

SWEN1004 MATHEMATICS FOR SOFTWARE ENGINEERS (3 Credits)

- Pre-requisite: None
- Anti-requisite: None

Syllabus:

Teaching:

- Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

- In-course Test(s)/Assignment(s): 50%
- Final Theory Examination: 50%

SWEN1005 MOBILE WEB PROGRAMMING (3 Credits)

- Pre-requisite: None
- Anti-requisite: None

Syllabus:

- Mobile web pages and content. Use of HTML to create mobile applications. Comparison of native with browser-based applications. Use of style sheets for mobile web applications. Offline API.

Teaching:

- Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

- In-course Test(s)/Assignment(s): 100%
SWEN1006 RESEARCH METHODS FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: None

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:
In-course Test(s)/Assignment(s)/Research paper 100%

SWEN1007 SOFTWARE ENGINEERING ESSENTIALS (3 Credits)

Pre-requisite: None

Anti-requisite: None

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:
In-course Test(s)/Assignment(s) 60%
Final Theory Examination 40%
SWEN1008 TECHNICAL WRITING FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: SWEN1006 Research Methods For Software Engineers

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

| In-course Test(s)/Assignment(s)/Project paper | 100% |

SWEN1009 AN INTRODUCTION TO COMPUTING II (3 Credits)

Pre-requisite: SWEN1000 An Introduction To Computing I

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

| In-course Test(s)/Assignment(s) | 50% |
| Final Theory Examination | 50% |
LEVEL II SOFTWARE ENGINEERING COURSES

SWEN2000 AN INTRODUCTION TO REQUIREMENTS ENGINEERING (3 Credits)

Pre-requisite: SWEN1007 Software Engineering Essentials
 SWEN2001 An Introduction to Software Engineering

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s) 60%
Final Theory Examination 40%

SWEN2001 AN INTRODUCTION TO SOFTWARE ENGINEERING (3 Credits)

Pre-requisite: SWEN1001 An Introduction to Object Oriented Programming

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s) 60%
Final Theory Examination 40%
SWEN2002 AN INTRODUCTION TO THE ANALYSIS OF ALGORITHMS (3 Credits)

Pre-requisite: SWEN1000 An Introduction to Computing I
 SWEN1001 An Introduction to Object Oriented Programming
 SWEN1004 Mathematics for Software Engineers
 SWEN1009 An Introduction to Computing II

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Test(s)/Assignment(s)</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>50%</td>
</tr>
</tbody>
</table>

SWEN2003 COMPUTER NETWORKING & SECURITY (3 Credits)

Pre-requisite: None

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.
Method of Examination:

In-course Test(s)/Assignment(s)
50%

Final Theory Examination
50%

SWEN2004 COMPUTER ORGANIZATION (3 Credits)

Pre-requisite:
SWEN1000 An Introduction to Computing I
SWEN1001 An Introduction to Object Oriented Programming
SWEN1004 Mathematics for Software Engineers
SWEN1009 An Introduction to Computing II

Anti-requisite:
None

Syllabus:

Teaching:
Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)
50%

Final Theory Examination
50%

SWEN2005 DATABASE SYSTEMS (3 Credits)

Pre-requisite:
SWEN1000 An Introduction to Computing I
SWEN1009 An Introduction to Computing II
SWEN2003 Computer Networking & Security

Anti-requisite:
None

Syllabus:

Teaching:
Two (2) hours of lectures and Two (2) hours of labs per week.
Method of Examination:
In-course Test(s)/Assignment(s)/Project 100%

SWEN2006 DISCRETE MATHEMATICS FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: SWEN1004 Mathematics for Software Engineers

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:
In-course Test(s)/Assignment(s) 50%
Final Theory Examination 50%

SWEN2007 OBJECT ORIENTED DESIGN AND IMPLEMENTATION (3 Credits)

Pre-requisite: SWEN2001 An Introduction to Software Engineering

Anti-requisite: None

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

LEVEL III SOFTWARE ENGINEERING COURSES

SWEN3000 APPLICATION DEVELOPMENT FOR IOS DEVICES (3 Credits)

Pre-requisite: SWEN2007 Object Oriented Design and Implementation

Anti-requisite: COMP3425 Mobile Applications for iOS Devices

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

- iOS Application: 50%
- Report for the iOS application: 30%
- Oral presentation: 20%

SWEN3001 ANDROID APPLICATION DEVELOPMENT I (3 Credits)

Pre-requisite: SWEN2007 Object Oriented Design and Implementation

- SWEN2005 Database Systems

Anti-requisite: None

collections framework. Graphical User Interface development using swing. Java 5 features such as enumerations, enhanced for loop, formatted output, Scanner autoboxing and unboxing of primitives, generic types, variable-length argument lists. JDK tools and deploying applications.

Teaching: Two (2) hours of lectures and Two (2) hours of labs per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android application</td>
<td>60%</td>
</tr>
<tr>
<td>Report for the Android application</td>
<td>30%</td>
</tr>
<tr>
<td>Oral presentation</td>
<td>10%</td>
</tr>
</tbody>
</table>

ELECTRONICS

LEVEL I ELECTRONICS COURSES

ELET1200 – BASIC CIRCUIT ANALYSIS (3 Credits)

Pre-requisites: ELET1220 – Introduction to Electronics

Anti-requisite: ELET1100 – Circuit Analysis

Teaching: Two (2) lectures and Two (2) hours of laboratory per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In course test(s) / Assignment(s)</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>20%</td>
</tr>
</tbody>
</table>

ELET1205 – COMPUTER AIDED DESIGN (3 Credits)

Pre-requisites: None

Anti-requisite: None

Teaching: One (1) lecture and Four (4) hours laboratory per week.

Method of Examination:
- Final Theory Examination (2 hours) 40%
- In course test(s) / Assignment(s) 10%
- Laboratory 50%

ELET1220 – INTRODUCTION TO ELECTRONICS (3 Credits)

Pre-requisites: CAPE Physics or CAPE Mathematics and CSEC Physics or equivalents

Anti-requisite: ELET1120 – BASIC ELECTRONICS

Syllabus: Resistors; Capacitors; Inductors; Characteristics of discrete components; Application of discrete components in simple circuits. Diodes; Bipolar Junction Transistors (BJT); Silicon Controlled Rectifiers (SCR); Diodes for Alternating Current (DIAC); Triode for alternating current (TRIAC); Characteristics of discrete components; Applications. Power supply components; Regulator components; Characteristics of simple power supplies and regulators; Applications.

Teaching: Two (2) lectures and Two (2) hours of laboratory per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In course test(s) / Assignment(s) 20%
- Laboratory 20%

ELET1210 – DIGITAL ELECTRONICS I (3 Credits)

Pre-requisites: CAPE Physics or CAPE Mathematics and CSEC Physics or equivalents

Anti-requisite: ELET1110 – Digital Electronics

Syllabus: The implementation of logical functions using electronic gates and the importance of minimization, using various methods. Binary arithmetic; Number systems; Floating point representation; Binary codes and code conversion; Encoders and Decoders. Digital Building Blocks (flip-flops, counters, data selectors and demultiplexers, binary adders). Logic Families (Bipolar, TTL, FET, MOS, CMOS) and their family characteristics (propagation delay, fan out, power dissipation, noise immunity and packing density). Finite State Device (FSD) design and construction.
Teaching: Two (2) lectures and Two (2) hours of laboratory per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In course test(s) / Assignment(s) 20%
- Laboratory 20%

ELET1215 – DIGITAL ELECTRONICS II (3 Credits)

Pre-requisites: ELET1210 – Digital Electronics I
Anti-requisite: None

Syllabus: Shift registers, latches and word clocks. Monostable pulse generators and sequencers. Schmitt trigger. Types of Analog to Digital (ADC) and Digital to Analog (DAC) circuits. Design of Asynchronous Sequential Circuits and hazard analysis. Combining functional blocks together to produce complex, non-programmable devices.

Teaching: Two (2) lectures and Two (2) hours of laboratory per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In course test(s) / Assignment(s) 20%
- Laboratory 20%

LEVEL II ELECTRONICS COURSES

ELET2215 - MICROPROCESSORS SYSTEMS (3 Credits)

Pre-requisite: ELET1215 – Digital Electronics II (or ELET1110 – Digital Electronics)

Syllabus: Architecture of 8-bit CPU’s e.g. INTEL 8085, Instruction set, Registers and their uses, Operation, Busses, Addressing, Data flow, Control section, Interrupts, Stack, Branching, Subroutines, Loops, Serial I/O, Interfacing, Port and memory mapping, Polling, Handshaking, Parallel ports, Serial communications (RS-232), A/D and basic D/A interfacing, device control with simple examples, comparison with other 8-bit CPU’s.
Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
<tr>
<td>In-course Tests/Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>20%</td>
</tr>
</tbody>
</table>

ELET2220 – CIRCUIT SIMULATION AND APPLICATIONS (3 Credits)

Pre-requisite: ELET1200 – Basic Circuit Analysis (or ELET1100 – Circuit Analysis)

Syllabus: Simple AC & DC circuits and transient analysis, BIAS circuit and AC Sweep analysis, Characteristics of diodes and zener diodes, Diode and zener diode circuits, Characteristics of bipolar transistors, Bipolar transistor circuits, Characteristics of Field Effect transistors, Field Effect transistor circuits, Characteristics of Thyristors, Transistor as a switch, Characteristics of OPAMPS, Operational Amplifier (OP-AMP) circuits, Component tolerances in software, Circuit design with component tolerances.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
<tr>
<td>In-course Tests/Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>20%</td>
</tr>
</tbody>
</table>

ELET2225 – DISCRETE COMPONENT ELECTRONICS (3 Credits)

Pre-requisite: ELET1200 – Basic Circuit Analysis (or ELET1100 – Circuit Analysis)

Syllabus: Diode and Transistor parameters, Various biasing methods for transistors, Modelling (Re and Hybrid) of transistor circuits, Calculating input and output impedances and voltage, current and power gain for common configurations of BJT and FET, Advantages and disadvantages of various other circuits (such as Darlington, cascade, cascode and complementary symmetry) and calculations for these circuits as above, Calculating the effect of RC coupling on bandwidth (high and low frequency response), Oscillator fundamentals (positive and negative feedback and effect on gain, bandwidth and stability), Calculations for transistors used in regulator circuits, Calculations for transistors used in switching circuits.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
</tbody>
</table>
ELET2230 – DIGITAL COMMUNICATIONS SYSTEMS I (3 Credits)
Pre-requisite: ELET1215 – Digital Electronics II AND (MATH1190 – Calculus A OR COMP1180 – Mathematics for Computer Science I OR COMP2150 – Networks I)
Syllabus: Digital Communication System Blocks, Performance Criteria, Discrete Memoryless Channel (DMC), Introduction to Error-Control Coding, Information Theory, Shannon’s Source Coding Theorem, Huffman Code Source Coding Algorithm, Universal Source Coding Algorithm, Channel Capacity, Shannon’s Channel Coding Theorem, Bandpass modulation techniques, Binary Phase Shift Keying (BPSK), BPSK Performance, Quadrature Phase Shift Keying (QPSK), M-ary PSK Modulation (MPSK), Soft-Decision, Information Throughput.
Teaching: Two (2) lectures and two (2) hours of laboratory per week.
Method of Examination:
- Final Theory Examination (2 hours) 60%
- In-course Tests/Assignments 20%
- Laboratory 20%

ELET2235 – AUTOMATION TECHNOLOGY AND APPLICATIONS (3 Credits)
Pre-requisite: ELET1210 – Digital Electronics 1 (or ELET1110 Digital Electronics)
Syllabus: Microcontroller systems and architectures, Programmable Logic Controller (PLC) and Field-Programmable Gate Arrays (FPGA) architectures and systems, Industrial Network Topologies, Distributed Control Systems (DCS) and applications, Supervisory Control And Data Acquisition (SCADA) systems and their applications.
Teaching: Two (2) lectures and two (2) hours of laboratory per week.
Method of Examination:
- Final Theory Examination (2 hours) 60%
- In-course Tests/Assignments 20%
- Laboratory 20%

ELET2240 - SENSORS AND ACTUATION DEVICES (3 Credits)
Pre-requisite: ELET1215 – Digital Electronics II
Syllabus: Measurements of Displacement and Strain, Force and Torque Measurement, Pressure Measurement,
Flow Measurement, Measurement of Temperature, Measurement of other non-electrical quantities such as humidity, pH, level, Temperature sensors, Magnetic sensors, Electrical sensors, Mechanical sensors, Acoustic sensors, Optical sensors, Chemical sensors, Image sensors, Biosensors, Electrical actuators, Mechanical actuators, Pneumatic and Hydraulic actuators, Piezoelectric actuators, Polymer actuators, Elements of telemetry and data acquisition systems, Wireless sensors and Networking.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In-course Tests/Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>20%</td>
</tr>
</tbody>
</table>

ELET2951 - ELECTRONICS EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: None

Syllabus: An advanced course in Electronics taken as an exchange student at an approved institution and pre-approved by the Dean.

LEVEL III ELECTRONICS COURSES

ELET3215 – MICROCONTROLLER TECHNOLOGY (3 Credits)

Pre-requisite: ELET2215 – Microprocessor Systems (or ELET2100 – Microprocessors I)

Syllabus: Architecture of 8-, 16- and 32-bit microcontrollers: Hardware, Instruction set, Registers and their uses and operation, Busses, Address and Data Addressing, Data flow, Control section; Microcontroller Peripherals: I/O Ports, Serial and Parallel modules, RS232 module, A/D and D/A modules; Interrupts and Polling, Stack and its operation, Branching, Subroutines, Loops; Serial I/O: Interfacing, Port and memory mapping, Handshaking, Parallel ports; Advanced Microcontroller Features: Direct Memory Access (DMA) peripherals, Real-time Operating System (RTOS) concepts and operation.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours):</td>
<td>60%</td>
</tr>
<tr>
<td>In-Course tests/assignments:</td>
<td>20%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>20%</td>
</tr>
</tbody>
</table>
ELET3220 – CONTROL SYSTEMS (3 Credits)
Pre-requisite: ELET2120 – Discrete Device Electronics (or ELET2225 – Discrete Component Electronics)

Syllabus: Introduction to dynamic systems and control, Modelling of physical systems, including linearization, System transfer functions, Analysis of system response, Feedback and multiple subsystems, Stability analysis of a system, Steady state errors, Time response of systems and design specifications, Frequency response techniques and designs specifications, Definition and construction of the Root Locus, Compensation using the Root Locus, Compensations and PID controller implementation.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:
- Final Theory Examination (2 hours): 60%
- In-Course tests/assignments: 20%
- Laboratory: 20%

ELET3230 – ESSENTIALS OF DIGITAL SIGNAL PROCESSING DSP (3 Credits)
Pre-requisite: MATH1190 – Calculus A OR COMP1180 – Mathematics for Computer Science I OR COMP2150 – Computer Networks I

Syllabus: Introduction to DSP; Basic Digital Signals; Impulse Response and Convolution; Difference Equations; Fourier Analysis; Fourier Transform; Sampling; Discrete Fourier Transform (DFT); Digital Frequency; Frequency Response; Discrete Time Fourier Transform (DTFT); Parseval’s Theorem; Z-Transform; Zeros and Poles; Inverse Z-Transform; Filter Design.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:
- Final Theory Examination (2 hours): 60%
- In-Course tests/assignments: 20%
- Laboratory: 20%

ELET3235 – DIGITAL COMMUNICATION SYSTEMS II (3 Credits)
Pre-requisite: ELET2230 – Digital Communication Systems I (or ELET2130 Digital Communications)

Syllabus: Introduction to Error-Control Coding; Information Throughput; Information Theory Recap; Shannon’s Channel Coding Theorem; Block Codes and Coding Theorem; Linear Block Codes; Cyclic
Codes; Convolutional Codes; Viterbi Algorithm; Trellis Coded Modulation (TCM); TCM Decoder; Low Density Parity Check Codes (LDPC) Encoder; LDPC Decoder.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:
- Final Theory Examination (2 hours): 60%
- In-Course tests/assignments: 20%
- Laboratory: 20%

ELET3240 – DIGITAL COMMUNICATION SYSTEMS III (3 Credits)

Pre-requisite: ELET3235 – Digital Communication Systems II

Syllabus: Signals, Phasors, & Spectrum; Exponential Fourier Series; Power and Bandwidth; Fourier Transform; Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT); Additive White Gaussian Noise (AWGN); Power Spectral Density (PSD); Energy Spectral Density (ESD); Band Limited White Noise Analysis; Recap of MPSK; Quadrature Amplitude Modulation (QAM); Orthogonal Frequency Division Multiplexing (OFDM); OFDM Based on QAM; Frequency Shift Keying (FSK); Comparison of Modulation Schemes.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:
- Final Theory Examination (2 hours): 60%
- In-Course tests/assignments: 20%
- Laboratory: 20%

ELET3250 – BIOMEDICAL INSTRUMENTATION (3 Credits)

Pre-requisite: ELET2240 – Sensors and Actuation Devices (or ELET3210 Sensors & Actuator Technology)

Syllabus: Introduction to Anatomy and physiology: Elementary ideas of cell structure include basic Haematology; Overview of Medical Electronics Equipment: Concepts and components of biosensors and biomedical instrumentation; Preparation of Biosensors: Bimolecular materials used in biosensors and their properties; Types of Biosensors and their applications: Enzyme based biosensors (glucose and cholesterol), micro immuno-biosensors and their characteristics, application of biosensors in the environment, bacterial and viral analysis, food and beverage production and analysis, clinical diagnosis using Photometrics and ElectroChemiLuminescence (ECL); Electrodes: Bio-electric signals, electrodes, electrode tissue interface, contact impedance, types of electrodes, electrodes used for ECG and EEG; Bio-Medical Recorders: Block diagram descriptions and applications of typical instruments for ECG, EEG, and EMG machines; Patient Monitoring Systems: Heart, pulse, blood pressure, and respiration rate measurements, principle of
the defibrillator and pace mark, use of microprocessor in patent monitoring; Safety Aspects of Medical Instruments: Gross current shock, micro current shock, special designs for safety consideration and standards including biohazardous nature of Biomedical Instrumentation.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:
- Final Theory Examination (2 hours): 60%
- In-Course tests/assignments: 20%
- Laboratory: 20%

ELET3255 – WIRELESS COMMUNICATIONS (3 Credits)

Pre-requisite: ELET2225 – Discrete Component Electronics (or ELET2120 Discrete Device Electronics)

AND

ELET2230 – Digital Communication Systems I (or ELET2130 Digital Communications)

Syllabus: Harmonic content of complex waveforms; Mixing versus modulation of waveforms; AM, FM and PM of carrier waves and associated sideband spectra produced; Superheterodyne receivers and circuits; Transmission lines and antenna principles; Propagation of radio waves, noise limitations, multipath reception; High frequency circuit design techniques for microwave oscillators and amplifiers; Overview of cellular telephone system based on GSM; The multiple access scheme based on OFDM.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:
- Final Theory Examination (2 hours): 60%
- In-Course tests/assignments: 20%
- Laboratory: 20%

ELET3260 – ADVANCED MICROPROCESSORS & SYSTEMS (3 Credits)

Pre-requisite: ELET2215 – Microprocessor Systems

Syllabus: Architecture: 32-bit architecture; 64-bit architecture; pipelining; multimedia extensions; coprocessors; DMA; Multiprocessors; Hardware processing: Hardware descriptive languages; soft processors; FPGAs; CPLDs; Logic Blocks; Operating Systems: Stack and its operation, Branching, Subroutines, Loops, Realtime Operating Systems, Threads, Processes, Remote Login, Windows, Unix, Lunix, Programming languages; Applications & Future Concepts; Embedded systems, Mobile cellular modems, Nanotechnology, Quantum technology.
Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours): 60%
In-Course tests/assignments: 20%
Laboratory: 20%

ELET3290 – SEMESTER ELECTRONICS RESEARCH PROJECT (3 Credits)
Pre-requisite: None

Syllabus: The material will be based on the topic selected.

Teaching: The course is comprised 100% research over a total of forty-eight (48) hours of practical work over the course of twelve weeks.

Method of Examination:

Students will be assessed by means of two (2) oral presentations to a general audience and a final written report as follows:

Mid-semester Oral Presentation: 10%
Final Oral Presentation: 30%
Final Written Report: 60%

ELET3295 – MAJOR ELECTRONICS RESEARCH PROJECT (6 Credits)
Pre-requisite: None

Syllabus: The material will be based on the topic selected.

Teaching: The course is comprised of 100% research over a total of ninety-six (96) hours of practical work over the course of twenty-four (24) weeks.

Method of Examination:

Students will be assessed using four (4) oral presentations to a general audience and a final written report as follows:

Mid-semester 1 Oral Presentation: 5%
End of Semester 1 Oral Presentation: 10%
Mid-semester 2 Oral Presentation: 5%
Final Oral Presentation: 15%
Final Written Report: 65%
ELET3298 – GROUP ELECTRONICS RESEARCH PROJECT (6 Credits)

Pre-requisite: None

Syllabus: The material will be based on the topic selected.

Teaching: Limited to groups of 2 or 3 students. The course is comprised of 100% research over a total of ninety-six (96) hours of practical work over the course of twenty-four (24) weeks.

Method of Examination:

Students will be assessed using four (4) oral presentations to a general audience and a final written report as follows:

- Mid-semester 1 Oral Presentation: 5%
- End of Semester 1 Oral Presentation: 10%
- Mid-semester 2 Oral Presentation: 5%
- Final Oral Presentation: 15%
- Final Written Report: 65%
MATHEMATICS

PRELIMINARY MATHEMATICS COURSES

MATH0100 - PRE CALCULUS (6 Credits)
Pre-requisite: Caribbean Secondary Education Certificate (CSEC) General Proficiency course in Mathematics, and/or the CSEC General Proficiency course in Additional Mathematics, or equivalent.

Syllabus: Propositions, logical connectives, truth tables and logical equivalence, Properties of binary operations, inequalities, methods of proof and remainder theorem, Exponential and logarithmic functions, indices, laws of logarithms and inverse functions, Domain, range, injective, surjective, equations and inequalities involving simple rational functions and modulus function, Trigonometric functions, identities and equations, Equations of tangents and normal to circles, points of intersection of two curves, parametric representation and Cartesian equation of a curve, Three dimensional representation of vectors, addition and scalar product of vectors, position and unit vectors, length and direction of vector, vector equations of lines and planes, Concept of limits, limit theorems, continuity and intermediate value theorem, Derivative as limit, gradient, rates of change, differentiation from first principles, product and quotient rules, second derivatives and curve sketching, Linearity law of integration, indefinite and definite integrals, application of integration, methods of integration and solutions of simple first order differential equations by integration.

Teaching: Five (5) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (3 hours)</td>
<td>50%</td>
</tr>
<tr>
<td>In-course Tests/Assignments</td>
<td>50%</td>
</tr>
</tbody>
</table>

In order to pass this course, Students MUST PASS BOTH the course work component and final examination.
MATH0110 - CALCULUS AND ANALYTICAL GEOMETRY (6 Credits)

Pre-requisite: Caribbean Secondary Education Certificate (CSEC) General Proficiency course in Mathematc, and / or the CSEC General Proficiency course in Additional Mathematics, or equivalent.

Syllabus:
Express complex numbers in the form $a + bi$, where a and b are real numbers, Add, subtract, multiply and divide complex numbers, Interpret modulus and argument of a complex number in Argand diagram, Find the derivative of $e^{f(x)}$ and $\ln f(x)$, where $f(x)$ is a differentiable function of x, Find first and second derivatives of combinations of polynomials, trigonometric, exponential and logarithmic functions, Apply the chain rule to obtain gradients and equations of tangents and normal to curves given in parametric form, Use the concept of implicit differentiation, Integrate an improper rational function, exponential function and logarithmic function, Find integrals of the form $\int \frac{f'(x)}{f(x)} \, dx$ and use substitutions to integrate functions (the substitutions will be given in non-trivial cases), Derive and use reduction formulae to obtain integrals which may involve integration by parts, Define the concept of a sequence as a function from the positive integers to the real numbers, Describe the behavior of convergent and divergent sequences by simple examples, Define a series as the sum of n terms of a sequence, Define the mth partial sum as the sum of first m terms of the sequence. Use the Maclaurin and Taylor theorem for the expansion of series, Expand $(a + b)^n$, for $n \in \mathbb{Q}$ in terms of Pascal Numbers $\binom{n}{r}$. Use linear interpolation to find an approximation for a root in a stated interval, Use the Newton-Raphson method to approximate roots, Find the number of ways of combining and permuting different objects, Define and calculate the probability of an event occurring by using simple laws, Invert a non-singular matrix of order n for $n = 2, 3$, Reduce a system of linear equations to echelon form, Determine whether a system of linear equations is consistent or inconsistent, Solve a differential equations of the form, $\frac{dy}{dx} + ky = f(x)$, where k is a constant or function of x and f is a function Solve second order ordinary differential equations with constant coefficients and given boundary conditions.

Teaching: Five (5) lectures and one tutorial per week.

Method of Examination:
- Final Theory Examination (3 hours) 50%
- In-class Tests/Assignments 50%

In order to pass this course, Students MUST PASS BOTH the course work component and final examination.
LEVEL I MATHEMATICS COURSES

MATH1141 – INTRODUCTORY LINEAR ALGEBRA & ANALYTICAL GEOMETRY (3 Credits)

Pre-requisite: CAPE Pure Mathematics Units 1 and 2 or MATH0101 & MATH0102 Preliminary Mathematics 1 & 2 or equivalent

Syllabus:

VECTORS IN THE EUCLIDEAN PLANE: algebraic definition and geometric interpretation of a vector; norm; triangle inequality; scalar product; projects; parallel and perpendicular vectors.

VECTORS IN 3-DIMENSIONAL SPACE: norm; scalar product and projections; vector product and its geometric interpretation; (parametric) equations of lines & planes; intersections and parallel lines & planes; skew lines; shortest distances between skew lines and points and planes.

SYSTEMS OF LINEAR EQUATIONS: the general case of m linear equations in n unknowns; consistent, inconsistent and over determined systems; Gaussian Elimination; row echelon form.

MATRIX ALGEBRA: addition, scalar and matrix multiplication; square matrices and non-singular matrices; transpose of a matrix; diagonal and triangular matrices; inverse of a matrix.

DETERMINANTS: properties, evaluation and recursive definition of determinants; elementary row and column operation; adjoint matrix; Cramer’s rule.

COMPLEX NUMBERS: geometric interpretation of algebraic operations; Argand diagram; roots of polynomials.

CONIC SECTIONS: circles, ellipses, parabolas hyperbolas: construction and equations.

Teaching: Two (2) hours of lectures and one (1) tutorial session.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Test(s)/Assignment(s)</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH1190 – CALCULUS A (3 Credits)

Pre-requisite: CAPE Pure Mathematics Units 1 and 2 or MATH0101 & MATH0102 Preliminary Mathematics 1 & 2 or equivalent

Anti-requisite: None

Syllabus: LIMIT OF A SEQUENCE: limit of a sequence of real numbers; sum, product and quotient of convergent sequences
INFINITE SERIES: partial sum of a series, real numbers; definition of a convergent series, and examples of convergent and divergent series; comparison and ratio tests for convergence of a series.

LIMITS OF FUNCTIONS: basic properties of limits; limit of \(\sin(x)/x\) as \(x\) tends to zero; limit as \(x\) tends to infinity; evaluating the limits of functions.

CONTINUITY: definition of continuity at a point; examples of (dis)continuous functions; intermediate value theorem and its use to find roots of equations.

DERIVATIVE: definition of the derivative as the limit, as \(h \to 0\), of \((f(x+h)-f(x))/h\); calculating the derivative of simple functions using the definition; derivation of the derivative of the sum, product and quotient of functions; Leibniz’s formula; chain rule; hyperbolic functions; Maclaurin and Taylor series expansions of functions using the definition; derivation of the derivative of the sum, product and quotient of functions; Leibniz’s formula; chain rule; hyperbolic functions; Maclaurin and Taylor series expansions of functions.

INTEGRATION: the definite integral as the limit of a sum; evaluating the (Riemann) integral of simple functions from the definition; statement and use of the fundamental theorem of calculus; evaluation of integrals by standard techniques; length of a curve.

FUNCTIONS OF TWO VARIABLES: functions of two variables and their graphs; functions of several variables; definition and calculation of the partial derivative of a function of several variables; maxima and minima of functions of two variables.

Teaching: Two (2) hours of lectures and one (1) tutorial session.

Method of Examination:

- In-course Test(s)/Assignment(s) 50%
- Final Theory Examination 50%

MATH1152 – SETS AND NUMBER SYSTEMS (3 Credits)

Pre-requisite: Math1141 Introductory Linear Algebra & Analytical Geometry

Anti-requisite: None

Syllabus: LOGIC AND SET THEORY: statements in mathematics; negation, conjunction, disjunction and implication; illustration of logical statements; proof and validity of arguments; definition of a set; subsets, unions and intersections; set algebra and de Morgan’s laws.
RELATIONS: Cartesian product of sets; functions; injectivity and surjectivity; inverse of a function and inverse image; reflexive, symmetric and transitive relations; equivalence relations and partitions of sets; binary operations: commutative, associative and distributive operations

NATURAL NUMBERS: principle of mathematical induction; permutations and combinations; sequences

INTEGERS: divisibility; greatest common divisor and the Euclidean algorithm; infinitude of primes; fundamental theorem of arithmetic

RATIONAL NUMBERS: field axioms; is irrational

REAL NUMBERS: solution of linear and non-linear inequalities; absolute value and triangle inequality; sum of simple infinite series of real numbers (without tests for convergence)

COMPLEX NUMBERS: real and imaginary parts of a complex number; complex conjugates; modulus and argument of a complex number; triangle inequality; polar forms of a complex number

Teaching: Two (2) hours of lectures and one (1) tutorial session.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Test(s)/Assignment(s)</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH1195 – CALCULUS B (3 Credits)

Pre-requisite: MATH1190 Calculus A

Anti-requisite: None

Syllabus: LIMITS OF FUNCTIONS: intervals, neighborhoods and bounds of a function (of a single variable); definition of a limit; properties/theorems of limits (with associated proofs); directed (left-hand and right-hand) limits; asymptotes.

CONTINUITY: continuity, removable and essential discontinuities; properties/theorems of continuous functions; intermediate value theorem; squeeze theorem; extreme value theorem.

DERIVATIVES: derivative of a function (definition, differentiability & continuity, left & right-hand derivatives); Rolle's theorem; mean value theorem (including Cauchy's mean value theorem); evaluating indeterminate forms $\frac{0}{0}$ & $\frac{\infty}{\infty}$ using l'Hôpital's rule; other
indeterminate forms: \(0(\infty), \infty - \infty, 0^0, \infty^0, 1^\infty\)

INTEGRATION AND DOUBLE INTEGRALS: reduction formulae; introduction to the double integral as a double sum; double integral as an iterated integral; transformations in double integration

Teaching: Two (2) hours of lectures and one (1) tutorial session.

Method of Examination:
- In-course Test(s)/Assignment(s) 50%
- Final Theory Examination 50%

MATH1235 PYTHON PROGRAMMING & MATHEMATICAL SOFTWARE (3 Credits)

Pre-requisite: CAPE Pure Mathematics Units 1 and 2 or MATH0101 & MATH0102 Preliminary Mathematics 1 & 2 or equivalent.
(No prerequisite programming knowledge is necessary for this course.)

Anti-requisite: None

Syllabus:
- INTRODUCTION TO SAGE & SAGEMATHCLOUD: using Sage as a calculator; functions; matrices; solving problems symbolically; differentiation and integration in Sage

- PYTHON PROGRAMMING: loops and conditional expressions; lists, tuples, dictionaries and arrays; subroutines; program flow and good practice in programming

- PLOTTING IN SAGE: graphing functions & integrals; axes labeling; contour plots and level sets; parametric plots; loglog plots

- ELEMENTARY STATISTICS USING R: descriptive statistics; data visualization; interaction of R and Sage

- ELEMENTS OF GEOGEBRA: Toolbar, simple construction, measurements, classical triangle centers (medians, centroid, altitudes, orthocenter)

- ADVANCED TECHNIQUES IN GEOGEBRA: Check boxes, Pythagorean theorem

Teaching: Two (2) hours of lectures and one (1) tutorial session

Method of Examination:
- In-course Test(s)/Assignment(s) 100%
MATH1230 INTRODUCTORY APPLIED STATISTICS 1 (3 Credits)

Pre-requisite: CAPE Pure Mathematics Units 1 and 2 or MATH0101 & MATH0102 Preliminary Mathematics 1 & 2 or equivalent.

Anti-requisite: None

Syllabus:

OVERVIEW AND DESCRIPTIVE STATISTICS: population, samples and processes; pictorial and tabular methods in descriptive statistics; measures of location and measures of variability components

PROBABILITY: sample spaces and events; axioms, interpretations and properties of probability; counting techniques and conditional probability

DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTION: random variables; probability distributions for discrete random variables; binomial probability distribution; hypergeometric, negative binomial distribution and Poisson probability distribution

CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS: continuous random variables and probability density functions; cumulative distribution functions and expected values; normal distribution

POINT ESTIMATION: some basic general concept of point estimation

STATISTICAL INTERVALS BASED ON A SINGLE SAMPLE: basic properties of confidence intervals; large-sample confidence intervals for a population mean and proportion; intervals for a population mean and proportion; intervals based on a normal population distribution; confidence intervals for the variance and standard deviation of a normal population

TESTS OF HYPOTHESES BASED ON A SINGLE SAMPLE: hypotheses and test procedures; test about a population mean; tests concerning a population proportion; P-values and some comments on selecting a test procedure

INFERENCES BASED ON TWO SAMPLES: Z-tests and confidence intervals for a difference between two population means; two sample t-test and confidence interval; analysis of paired data; inferences concerning a difference between population proportions and inferences concerning two population variances

THE ANALYSIS OF VARIANCE: single-factor ANOVA
SIMPLE LINEAR REGRESSION AND CORRELATION: simple linear regression model; estimating model parameters; inferences about the slope parameter; prediction of future Y values and correlation

Teaching: Two (2) hours of lectures and one (1) tutorial session.

Method of Examination:

<table>
<thead>
<tr>
<th>In-course Test(s)/Assignment(s)</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>50%</td>
</tr>
</tbody>
</table>

LEVEL II MATHEMATICS COURSES

MATH2310 - ABSTRACT ALGEBRA 1 (3 Credits)

Pre-requisite: MATH1152 Sets and Number Systems

Syllabus:

SETS AND RELATIONS: equivalence relations; binary operations.

THE DEFINITION OF A GROUP: definition of a group; examples of groups (numbers, symmetries, matrices); properties of groups: cyclic, Abelian, finite.

SUBGROUPS, QUOTIENT GROUPS AND GROUP HOMOMORPHISMS: subgroups; cosets and Lagrange's theorem; Euler-Fermat theorem; Wilson's theorem; normal subgroups; construction of a quotient group; generating sets; homomorphisms of groups; kernel of a homomorphism; isomorphism theorems.

PERMUTATION GROUPS: symmetric group; transpositions and cycles; cycle decomposition and cycle structure; alternating group.

THE DEFINITION OF A RING: definition of a ring; examples of rings; special classes of rings; associativity and commutativity; zero-divisors and integral domains.

IDEALS, QUOTIENT RINGS, AND RING HOMOMORPHISMS: one-sided and two-sided ideals; construction of the quotient ring; maximal ideals; principal ideals; prime ideals; homomorphisms of rings; ring isomorphism theorems.

EUCLIDEAN RINGS: defining properties of Euclidean rings; Euclidean rings as principal ideal rings; divisibility and primality.

Teaching: Three (3) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-class Tests/Assignments</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>
MATH2315 - LINEAR ALGEBRA 1 (3 Credits)

Pre-requisite: MATH1152 Sets and Number Systems & MATH1235 Python Programming & Mathematical Software

Syllabus:

REVISION OF FUNDAMENTALS OF LINEAR ALGEBRA: homogeneous and non-homogeneous systems of linear equations; augmented matrix; row space and column space of a matrix; elementary row and column transformations: reduced row-echelon form; elementary matrices; matrix products via elementary row transformations; matrix products expressed as products of elementary matrices definition of determinant; properties of the determinant; Cramer’s rule; cofactors and the inductive definition of the determinant; determinants and inverses of matrices.

VECTOR SPACES: vector space over an arbitrary field; subspaces; examples of vector spaces and subspaces; intersections of and direct sums of subspaces.

LINEAR INDEPENDENCE AND BASES: linear combinations; linear span; linear independence; bases; dimension; examples of vector spaces of finite dimension and of infinite dimension; dimension of a subspace.

LINEAR TRANSFORMATIONS: definition; null space and range; rank; rank-nullity theorem; matrix of a linear transformation; composition of transformations; change of basis.

INNER PRODUCT SPACES: properties of inner products; orthogonality; norms; orthonormal bases; the Gram-Schmidt orthogonalization process; orthogonal matrices.

EIGENVALUES AND EIGENVECTORS: properties of eigenvalues and eigenvectors; diagonalization of matrices; similarity; characteristic polynomial; Cayley-Hamilton theorem.

Teaching: Three (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-class Tests/Assignments</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH2321 – REAL ANALYSIS I (3 Credits)

Pre-requisite: MATH1152 Sets and Number Systems & MATH1195 Calculus B

Syllabus:

REAL NUMBER SYSTEMS: preliminaries: sets, functions, logic and proofs; irrationality of \(\sqrt{2} \); axioms of arithmetic and order hold for \(\mathbb{R} \) and \(\mathbb{Q} \); axiom of completeness; upper/lower bounds; supremum/infimum; nested interval property; Archimedean property; density of \(\mathbb{Q} \) in \(\mathbb{R} \); existence of square roots; countable and uncountable sets; countability of \(\mathbb{Q} \); the set \(\mathbb{R} \) is uncountable; Cantor’s diagonal argument.
FUNCTIONAL LIMITS AND CONTINUITY: functional limits; sequential criterion for functional limits;
SEQUENCES AND SERIES: definition of sequence; converging sequences and their limit; bounded
sequences; algebraic limit theorem and order limit theorem; monotone convergence theorem; partial sums
and convergence of series; convergence of Σ1/n², divergence of the harmonic series; subsequences; Bolzano-
Weierstrass theorem; Cauchy sequence; Cauchy criterion; algebraic limit theorem for series; Cauchy
criterion for series; geometric series; absolute convergence test; alternating series test; ratio & root test;
rearrangement of series: absolute and conditional convergence.

TOPOLOGICAL PROPERTIES OF ℝ: open and closed sets; interior points; limit points; isolated points;
bounded sets; compact sets and connectedness; Heine-Borel theorem.

characterization of continuity; algebraic continuity theorem; composition of continuous functions;
preservation of compact sets; extreme value theorem (attainment of bounds); uniform continuity;
sequential criterion for nonuniform continuity; continuous functions defined on a compact set are uniform
continuous; intermediate value theorem

Teaching: Three (2) lectures and one tutorial per week.

Method of Examination:
In-class Tests/Assignments 50%
Final Theory Examination (2 hours) 50%

MATH2305 - DIFFERENTIAL EQUATIONS (3 Credits)
Pre-requisite: MATH1195 Calculus B & MATH1235 Python Programming & Mathematical Software
Co-requisite: MATH2304 Multivariable Calculus

Syllabus:
BASIC CONCEPTS: definition of an ordinary differential equation (ODE); order, degree;
linearity/nonlinearity solution of an ODE; initial conditions; n-parameter family of solutions; singular
solution; general solution; particular solution; direction field; isocline; ordinary and singular point.

DIFFERENTIAL EQUATIONS OF FIRST ORDER: separable differential equations (including existence and
uniqueness of solutions); homogenous differential equations; exact differential equation (including existence
and uniqueness of solutions); integrating factor; linear differential equations of first order (including
existence and uniqueness of solutions).

MODELLING AND EQUILIBRIA: classification of equilibria; modelling with ODEs: mixing problems,
fishery, Newton’s law of cooling, growth and decay processes (e.g., logistic equation), free fall, etc.

LINEAR DIFFERENTIAL EQUATIONS OF ORDER GREATER THAN TWO: definition of homogeneous and
non-homogeneous linear differential equations of higher order; linear independence and Wronskian;
existence and uniqueness theorem for initial value problems (IVPs); comparison to boundary value
problems (BVPs); general solution of homogeneous linear differential equation with constant coefficients:
characteristic equation and linear combination of solutions; particular solution of a nonhomogeneous linear
differential equation with constant coefficients: variation of parameters and method of undetermined
coefficients; examples of linear differential equations with variable coefficients; applications of second order

NUMERICAL METHODS: Euler's method, numerical solutions for first order ODEs; improved Euler's method; Runge-Kutta methods (RK4).

Teaching: Three (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-class Tests/Assignments</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH2330 - PROBABILITY THEORY 1 (3 Credits)

Pre-requisite: MATH1195 Calculus B

Co-requisite: MATH2304 Multivariable Calculus

Syllabus:

BASIC IDEAS OF PROBABILITY: definition of statistical experiment, sample space, events; the calculus of Events; equally likely events; combinatorial probability; definition of conditional probability; application to computing probabilities in simple situations; the theorem of total probability and Bayes' theorem; independent events; applications to simple situations including systems of components in series and in parallel.

DISCRETE RANDOM VARIABLES: definition of a random variable; definition and examples of discrete and continuous random variables; the probability function and distribution function of a discrete random variable; definition and calculation of the expectation, variance and moments of a discrete random variable from the probability function; detailed properties of the Bernoulli, binomial, hypergeometric, geometric and Poisson random variables; the Poisson approximation to the binomial.

CONTINUOUS RANDOM VARIABLES: probability density function (pdf) and distribution function of one continuous random variable; calculating the probability of an event from the pdf; percentiles of a continuous random variable; expectation and moments of a continuous random variable; the pdf and moments of the exponential, normal, gamma and chi-squared random variables; properties of one normal random variable; the normal approximation to the binomial; the distribution of X given X>a; the memoryless property of the exponential distribution; the Poisson process; the distribution of functions of one discrete or continuous random variable; the distribution function of any random variable.

SEVERAL RANDOM VARIABLES: joint distribution of several random variables in the discrete and continuous case; joint pdf; evaluating probabilities of events using the joint pdf of two random variables; marginal and conditional distributions; independence of random variables; expectation and its properties; E(XY)=E(X)E(Y) when X and Y are independent; covariance and correlation; the mean and variance of linear combinations of several random variables; the distribution of linear combinations of independent normal random variables and simple applications.

SAMPLE STATISTICS: definition of a statistic; definition and distribution of the sample mean and the sample variance; special case when the population is normal; the central limit theorem and its applications to simple problems.
Teaching: Three (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class Tests/Assignments</td>
<td>50%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH2335 - STATISTICS I (3 Credits)

Pre-requisite: MATH2330 Probability Theory I & MATH1235 Python Programming & Mathematical Software

Syllabus:

- **INTRODUCTION TO R AND MINITAB**: brief introduction to the software packages and to their use in describing and summarizing data involving one variable and several variables using basic statistics, graphs and plots; nominal, ordinal and 'interval' or continuous data will be considered.

- **SAMPLING DISTRIBUTIONS**: distribution of the sample means and sample variance including the special case of normality; the chi-squared, t and F distributions.

- **POINT ESTIMATION**: definitions of parameter, parameter space, point estimator, bias and mean squared error (MSE); MSE = variance (estimator) + bias squared; maximum likelihood estimators of one or more parameters.

- **INTERVAL ESTIMATORS**: the t and F distributions; derivation and calculation of confidence intervals of the means, difference between two means and variances in samples from normal populations with variance known and with variance unknown; confidence intervals for binomial proportions; sample size determination.

- **HYPOTHESIS TESTING**: definitions of statistical hypothesis; null and alternative hypothesis; type I and type II errors; significance level and power of a test; calculating significance level and power of a test given the critical or rejection region; testing hypotheses concerning the means and variances of normal populations; testing hypotheses concerning proportions; definition and calculation of p values.

- **CONTINGENCY TABLES**: testing for goodness of fit; independence.

- **EXPERIMENTAL DESIGN**: designed experiments and observational studies; the completely randomized design; one-way ANOVA; Duncan's multiple range test examining assumptions of the linear model; the randomized complete block design; the statistical model and two-way ANOVA; Latin squares; factorial Designs involving two factors.

- **REGRESSION ANALYSIS**: the idea of regression; the method of least squares; simple linear regression; use of graphical techniques to examine assumptions of the linear model; basic estimation, testing and forecasting problems in regression.

- **NON-PARAMETRIC METHODS BASED ON RANKS**: the sign test; signed rank test; rank-sum test; Kruskal-Wallis test.

Teaching: Three (2) lectures and one tutorial per week.
Method of Examinations:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class Tests/Assignments</td>
<td>50%</td>
</tr>
<tr>
<td>Final Theory examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH2304 – MULTIVARIABLE CALCULUS (3 Credits)

Pre-requisite: MATH1141 Introductory Linear Algebra & Analytical Geometry & MATH1195 Calculus B & MATH1235 Python Programming & Mathematical Software

Syllabus:

- **EUCLIDEAN SPACES**: vectors in \mathbb{R}^n; scalar product (dot product), norm and angle; cross product; lines and planes; linear transformations.

- **VECTOR FUNCTIONS (CURVES)**: continuity & differentiation; arc length; application to the geometry of curves.

- **SCALAR FIELDS (SURFACES)**: graphs of scalar functions; continuity; differentiability, partial derivatives and gradient: properties and their relationship to each other; Clairaut’s theorem; level sets; maxima, minima and critical points of functions in \mathbb{R}^2; Lagrange multipliers; evaluating double integrals; double integrals over non-rectangular regions; change of variables in multiple integrals; spherical and cylindrical polar coordinates.

- **VECTOR FIELDS**: continuity and differentiability; divergence, curl and Laplace operator.

- **VECTOR INTEGRATION AND INTEGRAL THEOREMS**: line integrals of scalar and vector fields; conservative vector fields; surface integrals; Green’s theorem in a plane; Stokes’ theorem; divergence theorem.

Teaching: Three (2) lectures and one tutorial per week.

Method of Examinations:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class Tests/Assignments</td>
<td>50%</td>
</tr>
<tr>
<td>Final Theory examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH2325 – ELEMENTARY NUMBER THEORY (3 Credits)

Pre-requisite: MATH1152 Sets and Number Systems & MATH1235 Python Programming & Mathematical Software

Co-requisite: MATH2310 Abstract Algebra I

Syllabus:

- **THE NATURAL NUMBERS**: Peano axioms; mathematical induction and strong induction; well-ordering principle.

- **DIVISIBILITY**: properties of divisibility; division algorithm; representation of integers.

- **GREATEST COMMON DIVISOR**: definition of GCD; GCD as linear combination; Euclid’s lemma; least common multiple (LCM); Euclidean algorithm; linear Diophantine equations (existence of solutions; set of all solutions; existence of solutions in positive integers).

- **PRIMES**: sieve of Eratosthenes; fundamental theorem of arithmetic; Euclid’s proof of the infinitude of primes; distribution of primes (e.g., in arithmetic progressions).
CONGRUENCES: congruence modulo a number; equivalence relations and classes; residue classes; linear congruences; the set \mathbb{Z}_n^*; check digits in coding theory (ISBN-10 & UPC); Chinese remainder theorem.

SPECIAL CONGRUENCES: Fermat’s little theorem; Euler’s theorem; Euler’s phi function (totient function) and its properties; Wilson’s theorem.

PRIMITIVE ROOTS: order of an element modulo a number; existence of primitive roots; primitive roots modulo composites; straightedge and compass constructions - the regular 17-gon.

CRYTOGRAPHY: monoalphabetic substitution ciphers and affine ciphers; Pohlig-Hellmann cipher; Massey-Omura exchange; RSA algorithm.

Teaching: Three (2) lectures and one tutorial per week.

Method of Examinations:

- In-class Tests/Assignments: 50%
- Final Theory examination (2 hours): 50%

LEVEL III MATHEMATICS COURSES

MATH3543 – ABSTRACT ALGEBRA II (3 Credits)

Prerequisites: MATH2310 Abstract Algebra 1 & MATH2315 Linear Algebra 1

Syllabus:

- REVISION OF GROUPS: basic axioms and examples; centralizers, normalizers, stabilizers and kernels; subgroups generated by subsets of a group; the lattice of subgroups of a group; cosets and Lagrange's theorem; isomorphism theorems; composition series; transpositions and the alternating group

- GROUP ACTIONS: group actions and permutation representation; groups acting on themselves; Cayley's Theorem; class equation; automorphisms; the Sylow Theorems; simplicity of A_5

- DIRECT PRODUCTS AND ABELIAN GROUPS: direct products; Fundamental Theorem of Finitely Generated Abelian Groups; table of groups of small order; recognizing direct products; semidirect products

- FURTHER TOPICS IN GROUP THEORY: p-groups; nilpotent groups; solvable groups; free groups; application of groups of medium order

- POLYNOMIAL RINGS: polynomial rings over fields; polynomial rings that are unique factorization domains; irreducibility criteria.

- FIELD THEORY: field extensions; algebraic extensions; splitting fields and algebraic closures; cycloctomic polynomials and extensions
Teaching: Two lectures and one tutorial per week.

Method of Examinations:

<table>
<thead>
<tr>
<th>Coursework</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>One 2-hour written paper</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH3545 – LINEAR ALGEBRA II (3 Credits)

Pre-requisite: MATH2310 Abstract Algebra 1 & MATH2315 Linear Algebra 1 & MATH2305 Differential Equations

Syllabus:

PRELIMINARIES: revision of matrices; change of basis and similarity; special types of matrices; invariant subspaces; determinants; tensor products.

INNER PRODUCT SPACES: inner products (in \mathbb{C}^n); orthogonal complement and projection onto a subspace; unitary transformations; Gram-Schmidt Process and QR factorization; linear functionals and dual spaces.

DIAGONALIZATION & TRIANGULARIZATION: characteristic polynomial; algebraic & geometric multiplicity of eigenvalues; diagonalizability; triangularization theorem; Geršgorin Circle Theorem; eigenvalues of AB and BA.

JORDAN NORMAL FORM: reduction to block diagonal form; nilpotent matrices; Jordan Form of a general matrix; Cayley-Hamilton Theorem and minimal polynomial; Weyr normal form; applications: quadratic surfaces, functions of matrices, linear recurrence relations, and stability of certain systems of ordinary differential equations.

NORMAL MATRICES: unitary similarity; normal matrices and the Spectral Theorem; conditions for unitary similarity.

HERMITIAN MATRICES: conjugate bilinear forms; properties of Hermitian Matrices; positive definite matrices; simultaneous row and column operations; polar factorization and Singular Value Decomposition

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-class Tests/Assignments</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>
MATH3550 - REAL ANALYSIS II (3 Credits)

Pre-requisite: MATH2321 Real Analysis 1

Syllabus:

THE DERIVATIVE: Derivatives and Intermediate Value Property, the Mean Value Theorem, Continuous Nowhere-Differentiable Functions.

SEQUENCES AND SERIES OF FUNCTIONS: Uniform Convergence of a Sequence of Functions, Uniform Convergence and Differentiation, Series of Functions, Power Series, Taylor Series.

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class Tests/Assignments</td>
<td>50%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH3555 – COMPLEX ANALYSIS (3 Credits)

Pre-requisite: MATH3550 Real Analysis 2

Syllabus:

THE COMPLEX NUMBER PLANE: algebra, geometry and topology of complex numbers; stereographic projection; curves and regions.

FUNCTIONS OF A COMPLEX VARIABLE: functions, limits and continuity; (complex) differentiability; Cauchy Riemann equations; harmonic functions and introduction to conformal mapping.

INTEGRATION IN THE COMPLEX PLANE: path integrals; Cauchy's theorem and Cauchy-Goursat theorem; Cauchy's formulae; applications: Liouville's theorem, Gauss’ fundamental theorem of algebra, maximum modulus theorem, applications in fluid dynamics, logarithms & multi-functions.

SEQUENCES AND SERIES: sequences of complex functions; power series & Cauchy-Taylor theorem; the identity theorem and the maximum principle; analytic continuation; Laurent series.

RESIDUE CALCULUS: isolated singularities; theorem of Casorati-Weierstrass and Picard’s theorem; meromorphic functions; the residue theorem; evaluation of real integrals; evaluation of infinite sums.
Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

- In-class Tests/Assignments: 50%
- Final Theory Examination (2 hours): 50%

MATH3560 – INTRODUCTION TO METRIC SPACES & TOPOLOGY (3 Credits)

Pre-requisites: MATH3550 Real Analysis 2

Syllabus:

DEFINITION & EXAMPLES: inequalities (Hölder, Minkowski, Cauchy-Schwarz); definition of a metric space; examples including Euclidean metric, discrete metric, space of all bounded sequences, ℓ^p-spaces, space of bounded/continuous functions.

SEQUENCES AND COMPLETION: sequences in metric spaces; Cauchy sequences in metric spaces; completion of a metric space.

TOPOLOGY: open and closed sets; relationship metric space – topological space; subspaces; countability axioms and separability; Baire's Category Theorem.

CONTINUITY: continuous mappings; extension theorems; real and complex-valued continuous functions; uniform continuity; homeomorphisms, equivalent metrics and isometry; uniform convergence of sequences of functions.

CONTRACTIONS: contraction mappings and applications (e.g., Picard’s theorem, inverse function theorem)

COMPACT SETS: bounded sets and compactness; characterizations of compactness; continuous functions on compact spaces; locally compact sets; compact sets in special metric spaces

CONNECTED SETS: connectedness; local connectedness; path-connectedness.
MATH3565 – PROBABILITY THEORY 2 (3 Credits)

Pre-requisite: MATH2330 Probability Theory 1 & MATH2335 Statistics 1 & MATH2304 Multivariable Calculus & MATH2321 Real Analysis 1

Syllabus:

PROPERTIES OF EXPECTATION: Expectation of Sums of Random variables, Moments of Number of Events that Occur, Covariance, Variance of Sums, and Correlations, Conditional Expectation, Conditional Expectation and Prediction, Moment Generating Functions including Joint Moment Generating Functions, Additional Properties of Normal Random Variables, which will include The Multivariate Normal Distribution and The Joint Distribution of Sample Mean and Sample Variance.

LIMIT THEOREMS: Chebyshev's Inequality and the Weak Law of Large Numbers, The Central Limit Theorem, The Strong Law of Large Numbers and Bounding the Error Probability When Approximating a Sum of Independent Bernoulli Random Variables by a Poisson Random Variable.

FURTHER TOPICS IN PROBABILITY: The Poisson Process, Markov Chains, Surprise, Uncertainty, Entropy, and an Introduction to Coding Theory and Entropy.

SIMULATIONS: General Techniques for Simulation Continuous Random Variables, Simulating from Discrete Distributions and Variance Reduction Techniques.

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Class tests/computer assignments</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hour)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH3570 – STATISTICS 2 (3 Credits)

Pre-requisite: MATH2335 Statistics 1 & MATH3565 Probability Theory 2

Syllabus:

ESTIMATION AND INTRODUCTORY BAYESIAN INFERENCE: Prior and Posterior Distribution, Conjugate Prior Distributions and Bayes Estimators.

FURTHER TOPICS IN ESTIMATION: Multi-parameter Case Estimation and testing, The EM-Algorithm, and Completeness and Uniqueness of Estimator Sufficiency.

OPTIMAL TESTS OF HYPOTHESES: Most Powerful Tests, Uniformly Most Powerful Tests, Likelihood Ratio Tests and The Sequential Probability Ratio Test.
SIMPLE COMPARATIVE EXPERIMENTS: Inferences About the Differences in Means, Inferences About the Differences in Means, Paired Comparison Designs.

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Class tests/computer assignments</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hour)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH3575 – INTRODUCTION TO NUMERICAL ANALYSIS (3 Credits)

Pre-requisite: MATH2305 Differential Equations & MATH2315 Linear Algebra 1 & MATH3550 Real Analysis 2

Syllabus:

MACHINE ARITHMETIC: real numbers, machine numbers and rounding; machine arithmetic and error propagation in arithmetic operations; cancellation errors.

APPROXIMATION AND INTERPOLATION: least square approximations, inner products, least square errors, convergence; examples of orthogonal systems; polynomial interpolation (e.g., Lagrange, Chebyshev, Hermite); approximation and interpolation by spline functions.

NUMERICAL DIFFERENTIATION AND INTEGRATION: numerical differentiation (formula for unequally spaced points); numerical integration by composite trapezoidal and Simpson’s rule; Newton-Cotes and Gauss formulae; applications of the Gauss Quadrature Rule.

NONLINEAR EQUATIONS: examples, iteration, convergence and efficiency; methods of bisection and Sturm sequences; secant and Newton’s method (including acceleration); fixed point iteration; contraction mapping principle.

INITIAL VALUE PROBLEMS FOR ODEs: types of differential equations; existence and uniqueness; description of one-step methods: Euler’s method, improved Euler’s method, Runge-Kutta methods; stability, convergence and asymptotics of global error; error monitoring and step control; stiff problems.

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:
MATH3580 – FOURIER ANALYSIS WITH PARTIAL DIFFERENTIALS EQUATIONS (3 Credits)
Pre-requisite: MATH2305 Differential Equations & MATH2315 Linear Algebra 1 & MATH3550 Real Analysis 2

Syllabus:
GENESIS OF FOURIER ANALYSIS: vibrating string, derivation and solution of the wave equation; the heat equation: derivation of the heat equation and steady-state heat equation in the disc.

BASIC PROPERTIES OF FOURIER SERIES: examples; uniqueness of Fourier series; convolutions; good kernels; Cesàro and Abel summability.

CONVERGENCE OF FOURIER SERIES: mean-square convergence of Fourier series; relation to pointwise convergence; an example of a continuous function with diverging Fourier series.

SOME APPLICATIONS OF FOURIER SERIES: isoperimetric inequality; Weyl’s equidistribution theorem; an example of a continuous but nowhere differentiable function; the heat equation on the circle.

FOURIER TRANSFORM ON \mathbb{R}: definition of the Fourier transform; Schwartz space; Fourier inversion; Plancherel formula; application to some partial differential equations; Poisson summation formula; Heisenberg uncertainty principle.

FINITE FOURIER ANALYSIS: Fourier inversion theorem and Plancherel identity on \mathbb{Z}_N; fast Fourier transform.

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class Tests/Assignments</td>
<td>50%</td>
</tr>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH3590 - MATHEMATICS RESEARCH PROJECT (3 Credits)
Pre-requisite: This course can be taken by students in the Double Major in Mathematics programme who have successfully completed all the second year core Mathematics courses, or by exchange students in Mathematics who have completed the courses on offer at Cave Hill (or equivalent) at their respective home institutions.

Syllabus:

MATH2304 Multivariable Calculus & MATH2305 Differential Equations & MATH2310 Abstract Algebra 1 & MATH2315 Linear Algebra 1 & MATH2321 Real Analysis 1

278
Utilize research methods to formulate suitable solutions to an applied or pure problem in Mathematics/Statistics.

Analyse in detail a given applied or pure problem in Mathematics/Statistics and provide solutions to the problem.

Use the LaTeX system in mathematical writing.

Present mathematical research both orally and in writing.

Teaching: Students are required to meet with their supervisors regularly (at least 6 times per semester) to discuss their research. They will research an advanced topic/problem including looking for appropriate literature give a final oral presentation and write a final report. Students will be informed of the deadlines for the submission of the project proposal and final report and the week of the final oral presentations.

Ideally, students should contact a potential supervisor at the end of the semester prior to the semester they wish to take this course in to discuss the suitability of their project.

Method of Examination:

either

AMS-style Oral Mid-Semester Presentation (12 min plus 3 min for questions) 15%

or

Preparation of an DIN-A0 conference-style poster (_either will be assessed by members of staff no later than the 7th week of the semester_)

Final Oral Presentation: 25%
Final Report: 60%

MATH3600 – TOPICS IN DISCRETE AND COMPUTATIONAL GEOMETRY (3 Credits)

Pre-requisite: MATH1152 Sets and Number Systems & MATH1235 Python Programming & Mathematical Software & 12 credits from Level II & III Mathematics courses

Syllabus:

POLYGONS: Polygonal Jordan curves, Triangulations, Art Gallery Theorem, Scissors Congruence & Hilbert’s Third Problem.

TRIANGULATIONS: Construction, the Flip Graph, Associahedron, Delaunay Triangulation.

VORONOI DIAGRAMS: Voronoi Geometry, Duality and the Delaunay Triangulation.

CURVES: Medial Axis, Straight Skeleton, Applications (Ricci flow, surface reconstruction etc.)

Teaching: Two (2) lectures and one tutorial per week

Method of Examination:
- In-class Test(s)/Assignment(s) 50%
- Final Theory Examination (2 hour) 50%

MATH3605 – INTRODUCTION TO GRAPH THEORY (3 Credits)

Pre-requisite: MATH1152 Sets and Number Systems & MATH1235 Python Programming & Mathematical Software & 12 credits from Level II & III Mathematics courses

Description: This is a first course in the theory and methods of complex variables. Many concepts in complex variable are generalizations of topics in calculus and real analysis, while other results and methods are specific to the subject itself. The material in this course is a blend of mathematical theorems and computational techniques. This course will be of interest to students majoring in mathematics or physics.

Syllabus:

BASICS: Subgraphs, Components, Degrees of Vertices, Minors, Paths and Connectedness, Bipartite Graphs, Dual graphs, Isomorphisms, Examples of various graphs.

PATHS: Eulerian and Hamiltonian graphs.

DIRECTED GRAPHS: Orientable Graphs, Connectedness and Strong Connectedness, Tournaments.

TREES: Properties of Trees, Centers and Centroids, Counting the Number of Spanning Trees, Cayley's theorem.

CONNECTIVITY: Vertex Cuts and Edge Cuts, Connectivity and Edge-Connectivity.

MATCHINGS: Hall's marriage theorem.

GRAPH COLOURINGS: Vertex Colorings, Triangle-free Graphs, Edge Colorings.

PLANARITY: Planar and Nonplanar Graphs, \(K_5 \) and \(K_{3,3} \), the Four-Color Theorem and Heawood's Five-Color Theorem.

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>In-class Tests/Assignments</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>50%</td>
</tr>
</tbody>
</table>

MATH3620 – FINANCIAL MATHEMATICS 1 (3 Credits)

Pre-requisite: MATH2304 Multivariable Calculus & MATH2330 Probability Theory 1 & MATH2315 Linear Algebra 1 & MATH2335 Statistics 1

Course Co-requisite(s): MATH3565 Probability Theory 2.

Syllabus:

INTEREST RATE MEASUREMENTS: Time Value of Money, Compound Interest, Simple Interest, Present Value, Future Value, Accumulation Functions, Effective Interest Rate, Nominal Interest Rate, Periodic Interest, Convertible Interest, Discount Rate, Nominal Discount Rate, Conversion of Nominal Interest Rate to Discount Rate, Accumulation Functions, Continuous Interest, Force of Interest, Constant Force of Interest, and Equation of Value.

MEASURING THE RATE OF RETURN ON AN INVESTMENTS: Internal Rate of Return, Cash Flow, Modified Internal Rate of Return, Borrowing Projects, Time Weighted Rate, Dollar Weighted Rate, Investment Year Method, Portfolio Method, New Money Rate and Net Present Value.

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

- Class tests/computer assignments 50%
- Final Theory Examination (2 hour) 50%

MATH3621 – FINANCIAL MATHEMATICS 2 (3 Credits)

Pre-requisite: MATH3620 Financial Mathematics 1 & MATH3565 Probability Theory 2

Syllabus:

INSURANCE, HEDGING, AND SIMPLE STRATEGIES: Forward Contract, Spot Price, Stock Index, Cash Settlement, Long Forward, Short Forward, Payoff for Forward, Profit for Forward, Zero Coupon Bond Profit, Call Option, European Option, American Option, Bermudan Option, Premium, Written Call Option, Put Option, Written Put Option, In the Money Option, At the Money Option, Out of the Money Option, Insurance, Options S and Equity Linked CD.

FORWARDS, FUTURES, AND SWAPS: Prepaid Forward Price, Arbitrage Pricing, Forward Contract on Stock, Pricing, Forward Premium, Synthetic Stock, Hedging with a Synthetic Stock, Cash and Carry Hedge,
Quasi Arbitrage, Cost of Carry, Lease Rate, Futures Contracts, Clearing House, Open Outcry, Mark to Market, S&P 500 Futures Prices Compared and Quanto Index Contracts.

INTEREST RATE FORWARDS AND FUTURE: Spot Rate, Forward Interest Rate, Zero-Coupon Bonds, Implied Forward Rate, Forward Rate Agreement (FRA) and Eurodollars.

SWAPS: Swap, Oil, Swap Payments, Dealer as Swap Counterparty, Swap, Market Value, Interest Rate Swap, Swap Rate R, Swap Curve, Accreting Swap, Amortizing Swap, and Swap Rate General Formula.

Teaching: Two (2) lectures and one tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Class tests/computer assignments</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hour)</td>
<td>50%</td>
</tr>
</tbody>
</table>
PHYSICS

PRELIMINARY PHYSICS COURSES

PHYS0070 - PRELIMINARY PHYSICS I (6 Credits)
Pre-requisite: None

Syllabus: SI units, dimensional analysis, vectors, equilibrium, Newton’s laws of motion, linear motion, displacement, average and instantaneous velocity and acceleration, constant acceleration, free fall, relative velocity, motion in a plane, projectile motion, circular motion, centripetal force, applications of Newton’s second law, gravitation, mass and weight, satellite motion, friction, work and kinetic energy, gravitational and elastic potential energy, dissipative and conservative forces, power, moments and torque, equilibrium problems, stress, strain, elastic moduli, Hooke’s law, simple harmonic motion, mass-spring system, simple pendulum. Temperature, thermometers, scales, thermal expansion, heat capacity, phase changes, conduction, convection, radiation, Stefan-Boltzmann law, ideal gas, equation of state, phase diagrams, triple and critical points, vapor pressure, effect of dissolved substances on freezing and boiling point, first law of thermodynamics, work and heat, adiabatic, isochoric, isothermal and isobaric processes, internal energy, molecular theory of motion, kinetic theory of ideal gas. Mathematical representation of traveling waves, standing waves, behavior of waves at boundaries, interference, sound waves, beats, intensity, decibels, the ear and hearing, quality and pitch, Doppler effect, ultrasonics and applications. Pressure in a fluid, pressure gauges, Archimedes’ principle, surface tension, contact angle and capillaries, Bernoulli’s equation, viscosity, Stokes’ law, Reynold’s number.

Teaching: Three (3) lectures, one tutorial per week and 52 hours of practical work.

Method of Examination:
- Final Theory Examination (3 hours) 60%
- In-course Tests/Assignments 20%
- Practical Reports 20%

PHYS0071 - PRELIMINARY PHYSICS II (6 Credits)
Pre-requisite: None

Syllabus: Electric charge, Coulomb’s law, insulators and conductors, electric field, lines of force, electric potential, potential differences, electron volt, capacitance, series and parallel combination, energy stored in a capacitor, dielectrics, current, resistivity, resistance, electromotive force, work and power, resistors in series and parallel, Kirchoff’s laws, Wheatstone bridge and potentiometer. Magnetic fields and field lines, magnetic flux, motion of a charged particle in a magnetic field,
Thomson’s measurement of charge to mass ratio for the electron (e/m), isotopes and spectrography, force on a current-carrying wires, induced emf, Faraday’s law, Lenz’s law, eddy currents, speed of light. Waves and rays, refraction and reflection from plane and spherical surfaces, refraction at plane and spherical surfaces, focal point and length, thin lenses, converging and diverging lenses, lens maker equation, aberrations, the eye, defects of vision, magnifier, camera, projector, compound microscope, telescope. Atomic nucleus, radiation from nuclear decay, isotopes and isobars, binding energy and stability, alpha, beta and gamma rays, decay law, decay constant, half-life, activity, radioactive shielding.

Teaching: Three (3) lectures, one tutorial per week and 52 hours of practical work.

Method of Examination:

<table>
<thead>
<tr>
<th>Examination Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (3 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In-course Tests/Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Practical Reports</td>
<td>20%</td>
</tr>
</tbody>
</table>

LEVEL I PHYSICS COURSES

PHYS1200 – PHYSICS I: MECHANICS OF TRANSLATIONAL MOTION (3 Credits)

Pre-requisite: CAPE Physics Units 1 & 2 and CAPE Pure Mathematics Units 1 & 2

Co-requisite: PHYS1205 Physics II: Rotation, Waves and Thermodynamics

Objectives: Fundamentals of kinematics and dynamics of classical particles

Teaching: Three (3) one-hour lectures, one (1) hour of tutorial and four (4) hours of practical per week. Course runs during first six (6) weeks of Semester I.

Method of Examination:

<table>
<thead>
<tr>
<th>Examination Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
</tbody>
</table>
PHYS1205 – PHYSICS II: ROTATION, WAVES AND THERMODYNAMICS (3 Credits)
Pre-requisite: CAPE Physics Units 1 & 2 and CAPE Pure Mathematics Units 1 & 2.
Co-requisite: PHYS1200 Physics I: Mechanics of Translational Motion.
Objectives: Fundamentals of rotation, mechanical waves and thermodynamics.
Teaching: Three (3) one-hour lectures, one (1) hour of tutorial and four (4) hours of practical per week. Course runs during second six (6) weeks of Semester I.
Method of Examination: Final Theory Examination (2 hours) 60%
In-class Tests/Assignments 20%
Practical Reports 20%

PHYS1210 – PHYSICS III: ELECTRIC FIELDS, CURRENTS AND CIRCUITS (3 Credits)
Pre-requisite: CAPE Physics Units 1 & 2 and CAPE Pure Mathematics Units 1 & 2.
Co-requisite: PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.
Objectives: Fundamentals of electric fields, electric potential, current, resistors and capacitors, simple circuits.

Teaching: Three (3) one-hour lectures, one (1) hour of tutorial and four (4) hours of practical per week. Course runs during first six (6) weeks of Semester II.

Method of Examination:

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In-class Tests/Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Practical Reports</td>
<td>20%</td>
</tr>
</tbody>
</table>
PHYS1220 – PHYSICS IV: MAGNETISM, ELECTROMAGNETIC WAVES AND OPTICS (3 Credits)

Pre-requisite: CAPE Physics Units 1 & 2 and CAPE Pure Mathematics Units 1 & 2.

Objectives: Fundamentals of magnetic fields, induction, electromagnetic waves, interference and diffraction.

Teaching: Three (3) one-hour lectures, one (1) hour of tutorial and four (4) hours of practical per week. Course runs during last six (6) weeks of Semester II.

Method of Examination:

- Final Theory Examination (2 hours) 60%
- In-class Tests/Assignments 20%
- Practical Reports 20%

LEVEL II PHYSICS COURSES

PHYS2400 – MATHEMATICAL METHODS IN PHYSICS I (3 Credits)

Pre-requisite: MATH1190 Calculus A, MATH1195 Calculus B

Objectives: Fundamentals of applied mathematics used in advanced physics and engineering courses.

Syllabus: Taylor series, Maclaurin series, ratio test for convergence, interval of convergence, geometric series, telescoping series. Complex numbers, complex roots, complex elementary functions, Euler’s formula. Equations of lines and planes in three dimensional space, vectors, linear functions, diagonalization of
matrices, eigenvectors and eigenvalues. Partial derivatives, total differentials, chain rule for functions of two or more independent variables, change of variables for two or more independent variables, Leibniz’s rule, Lagrange multipliers. Cartesian, cylindrical and spherical coordinate systems, double and triple integrals, surface integrals, Jacobians. First order differential equations, separation of variables, integrating factor, exact differential equations, using Newton’s second law to formulate differential equations.

Teaching: Two (2) one-hour lectures, one (1) hour of tutorial per week.

Method of Examination: Final Theory Examination (2 hours) 60%
 In-class Tests/Assignments 40%

PHYS2405 – MATHEMATICAL METHODS IN PHYSICS II (3 Credits)
Pre-requisite: PHYS2400 Mathematical Methods in Physics I.

Objectives: Fundamentals of applied mathematics used in advanced physics and engineering courses (continuation from PHYS2400 Mathematical Methods in Physics I).

Teaching: Two (2) one-hour lectures, one (1) hour of tutorial per week.

Method of Examination: Final Theory Examination (2 hours) 60%
 In-class Tests/Assignments 40%

PHYS2410 – MODERN PHYSICS (3 Credits)
Objectives: Fundamentals of special relativity, quantum mechanics, atomic and nuclear physics.

Syllabus: Lorentz contraction, time dilation, Lorentz transformations, velocity addition, Doppler effect, relativistic energy and momentum. Photons, photoelectric effect, blackbody radiation, matter waves and the de Broglie relation. Wave-particle duality, Heisenberg uncertainty principle, Compton effect, Bohr model of the atom. Time-independent Schrodinger equation, infinite potential well in one dimension, finite potential wells with bound and scattering states, quantum tunneling, hydrogen atom, electron spin and the Stern-Gerlach experiment, magnetic resonance, lasers. Conductors, insulators and semiconductors. Doped semiconductors, p-n junctions, diodes, light-emitting diodes and transistors. Radioactive decay, radioactive dating, nuclear fission, nuclear reactors, thermo-nuclear fusion and the evolution of stars.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours) 60%
In-class Tests/Assignments 40%

PHYS2415 – THEORY OF CLASSICAL MECHANICS (3 Credits)

Pre-requisite: PHYS1200 Physics I: Mechanics of Translational Motion,
PHYS1205 Physics II: Rotation, Waves and Thermodynamics,
PHYS1210 Physics III: Electric Fields, Currents and Circuits,
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.

Syllabus: Newton's laws of motion in one dimension, constant forces, position dependent forces, work-energy theorem, potential energy, turning points, velocity dependent forces, drag and terminal velocity. Full treatment of the simple harmonic oscillator, energy, damped harmonic motion, phase space, underdamped, overdamped and critically damped oscillator, driven damped harmonic oscillator and resonance. Displacement, velocity and acceleration in two and three dimensions, potential energy in three-dimensional motion, separable forces, projectile motion with drag, harmonic oscillator in two and three dimensions, motion of charged particles in electric and magnetic fields, constrained motion of a particle. Accelerated coordinate systems and inertial forces, rotating coordinate systems, dynamics of particles in rotating systems, effects of Earth's rotation and Foucault pendulum.
Gravity and central forces, orbit equation, effective potential, stability of
orbits. Center of mass, linear momentum, angular momentum and kinetic
energy of a system of particles, motion of two interacting bodies and reduced
mass.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination: Final Theory Examination (2 hours) 60%
In-class Tests/Assignments 40%

PHYS2420 – ADVANCED PHYSICS LABORATORY I (3 Credits)

Pre-requisite: PHYS1200 Physics I: Mechanics of Translational Motion,
PHYS1205 Physics II: Rotation, Waves and Thermodynamics,
PHYS1210 Physics III: Electric Fields, Currents and Circuits,
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.

Objectives: Practical experience in conducting experiments, troubleshooting apparatus,
data analysis, error analysis, writing proper laboratory reports, background
research for experiments.

Syllabus: Several experiments performed, researched and written in a standard report
format as outlined during the first four weeks of class. Mean and standard
deviation, error analysis, method of least squares (to be examined in an
in-class test). Examples of experiments: Millikan oil drop experiment,
electron diffraction, photoelectric effect, Michelson interferometer, electron
spin resonance, rotational motion and moment of inertia, Cavendish experiment
(measurement of gravitational constant), hydrogen fuel cell, coupled oscillators,
heat engine and ideal gas laws, Faraday rotation of polarized waves, magnetic
force.

Teaching: Six (6) hours of laboratory per week. Lectures (proper writing of laboratory
reports, data analysis and uncertainty analysis) during first four weeks
embedded within the six hours of laboratory.

Method of Examination: Written Laboratory Reports 70%
In-class Test 10%
Oral Presentation 20%

PHYS2425 – COMPUTATIONAL METHODS IN PHYSICS (3 Credits)

Pre-requisite: PHYS1200 Physics I: Mechanics of Translational Motion,
PHYS1205 Physics II: Rotation, Waves and Thermodynamics,
PHYS1210 Physics III: Electric Fields, Currents and Circuits,
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.

Objectives: Practical introduction to numerical analysis and computer simulation of physical problems.

Syllabus: Algorithms, pseudocode and flowcharts, programming syntax in a standard high level language (e.g. C, C++, FORTRAN), structural programming, basic UNIX commands, Monte Carlo simulation with pseudorandom numbers, roots, quadrature, Euler method for numerical solution of differential equations, Fourier methods, concepts in computer modelling.

Teaching: One (1) one-hour lecture and four (4) hours of practical per week.

Method of Examination:
- Final Theory Examination (2 hours) 40%
- In-class Tests 20%
- Practical Assignments 40%

PHYS2950 - PHYSICS ELECTIVE (3 Credits)

Pre-requisites: None

Syllabus: An advanced course in Physics taken as an exchange student at an approved institution and pre-approved by the Dean.
LEVEL III PHYSICS COURSES

PHYS3420 – ELECTROMAGNETIC THEORY I (3 Credits)

Pre-requisite: PHYS2405 Mathematical Methods in Physics II.

Syllabus: Scalar product, vector product, triple products, transformation properties of vectors, gradient, divergence and curl, vector identities, Laplacian, divergence theorem, Stokes’ theorem, spherical and cylindrical coordinates, Dirac delta function, Coulomb's law, electric field, continuous charge distributions, Gauss’ law, electric potential, Laplace’s equation, Poisson’s equation, boundary conditions, energy of assembling charge distributions, conductors and induced charge, capacitors, Earnshaw’s theorem, uniqueness theorems, method of images, applications of separation of variables to Laplace’s equation in Cartesian, cylindrical and spherical coordinate systems, multipole expansion of the electric potential, electric field of a dipole, Lorentz force law, currents, Biot-Savart law, divergence and curl of the magnetic field, Ampere’s law, magnetic vector potential, magnetic boundary conditions, multipole expansion of the vector potential, electromotive force, Ohm’s law, drift velocity, motional emf, Faraday’s law, induced electric field, inductance, energy in magnetic fields, displacement current, Maxwell’s equations, continuity equation and conservation of charge.

Teaching: One (1) one-hour lecture and four (4) hours of practical per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Examination Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>60%</td>
</tr>
<tr>
<td>In-class Tests</td>
<td>20%</td>
</tr>
<tr>
<td>Practical Assignments</td>
<td>20%</td>
</tr>
</tbody>
</table>

PHYS3445 – FUNDAMENTALS OF GENERAL RELATIVITY AND COSMOLOGY (3 Credits)

Pre-requisite: PHYS2410 Modern Physics; PHYS2405 Mathematical Methods in Physics II.

Objectives: Mathematical treatment of special and general relativity with an introduction to Cosmology.

Syllabus: Review of special relativity, Einstein’s postulates, Lorentz transformations, four-vectors, velocity, momentum and energy, addition of velocities, four-velocity, light cone, proper time, time dilations, Doppler effect, Lorentz invariance, conservation laws, invariance of electric charge, covariance of electrodynamics. General relativity: time dilation in a gravitational field, rank of tensors, covariant and contravariant four-vectors, metric and Kronecker tensors, invariant equations, tensor algebra, tensor calculus, principle of equivalence, principle of general covariance, generally covariant forms of Maxwell’s equations, curvature tensor, geometric analogies, Einstein’s field equations, weak field, gauge
invariance. Cosmology: measurements of cosmological distances, red shifts, standard model of cosmology, stellar equilibrium and collapse, Newtonian stars, white dwarfs, Chandrasekhar limit, neutron stars, supermassive stars, gravitational collapse, black holes, Schwarzschild solution, cosmological principle, tests of Einstein’s theory, generation and detection of gravitational waves, early history of the universe, inflation, age of the universe, cosmic microwave background, curvature and the fate of the universe.

Teaching: Two (2) one-hour lectures, one (1) hour of tutorial per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In-class Tests 20%
- Tutorial Assignments 20%

PHYS3450 – FLUID MECHANICS (3 Credits)

Syllabus: Density, pressure, fluids in equilibrium, pressure gauges, Pascal’s principle, Archimedes principle, buoyancy, types of flow, equation of continuity, Bernoulli’s equation, scalars, vectors, tensors, contraction and multiplication, force on a surface, gradient, divergence and curl, divergence theorem, Stokes’ theorem, particle and field description of fluid motion, flow lines, fluid acceleration and Galilean transformation, strain, rotation rates, simple plane flows, Reynold’s transport theorem, conservation of mass, stream functions, conservation of momentum, constitutive equation for a Newtonian fluid, Navier-Stokes momentum equation, noninertial frame of reference, conservation of energy, boundary conditions, Kelvin and Helmholtz theorems, vorticity equation in an inertial frame of reference, interaction of vortices, exact solutions of steady laminar flow, elementary lubrication theory, similarity solutions for incompressible viscous flow, oscillations, low Reynold’s number flow past a solid sphere.

Teaching: Two (2) one-hour lectures, one (1) hour of tutorial per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In-class Tests 20%
- Tutorial Assignments 20%

PHYS3455 – LASERS AND OPTICAL SYSTEMS (3 Credits)
Pre-requisite: PHYS2400 Mathematical Methods in Physics I.
Objectives: Advanced quantitative study of principles of optics and lasers.

Syllabus: Complex representation of waves, plane waves, spherical waves, converging and diverging waves, paraxial approximation, Michelson interferometer, Fabry-Perot interferometer, addition of propagating waves, division of wave front, amplitude interferometers, multiple coherent oscillators, Huygens’ principle, Fresnel formulation, Rayleigh-Sommerfeld diffraction, Fresnel and Fraunhofer diffraction, rectangular apertures, circular apertures, Rayleigh’s criterion, Fresnel diffraction from straight edges, Cornu spiral, polarization, quarter and half wave plates, retarders, circular polarizers, Jones calculus, Mueller calculus, Faraday effect, Kerr effect, Pockel effect, Fourier optics, intensity impulse response, resolution, incoherent transfer function, point spread function, optical transfer function, modulation transfer function, lasers, population inversion, stimulated emission, Einstein’s coefficients, solid state, gas, liquid and dye lasers, tunable, high power, high stability and short pulse lasers, width of spectral lines, gain of a lasing medium, Doppler, natural and collision broadening of spectral lines, axial and longitudinal modes of a laser cavity.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Examination Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In-class Tests</td>
<td>20%</td>
</tr>
<tr>
<td>Tutorial Assignments</td>
<td>20%</td>
</tr>
</tbody>
</table>

PHYS3460 – PHYSICS OF SUSTAINABLE ENERGY SYSTEMS (3 Credits)

Pre-requisite: PHYS2415 Theory of Classical Mechanics

Objectives: An in-depth survey of renewable energy systems: wind turbines, photovoltaics, hydroelectric, wave energy, ocean thermal energy conversion, storage.

batteries, fuel cells, compressed air turbines, flywheels.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In-class Tests</td>
<td>20%</td>
</tr>
<tr>
<td>Tutorial Assignments</td>
<td>20%</td>
</tr>
</tbody>
</table>

PHYS3465 – ELECTROMAGNETIC THEORY II (3 Credits)

Pre-requisite: PHYS3420 Electromagnetic Theory I

Objectives: A quantitative study of advanced topics in electromagnetic theory that builds on the principles learned in PHYS3420 (Electromagnetic Theory I).

Syllabus: Electric and Magnetic Fields in Matter: Atomic polarizability, electric field of a polarized object, bound charge, electric filed inside a dielectric, electric displacement, Gauss’ law in the presence of dielectrics, susceptibility and permittivity, boundary value problems with linear dielectrics, energy and forces in dielectrics, torques and forces on magnetic dipoles, paramagnetism, effect of magnetic fields on atomic orbits, diamagnetism, magnetization, bound currents and their physical interpretation, auxiliary field, boundary conditions, linear and nonlinear media, ferromagnetism. Conservation Laws: Continuity equation, Poynting’s theorem, momentum in electromagnetic fields, Maxwell’s stress tensor, conservation of momentum, conservation of angular momentum. Electromagnetic Waves: Properties of waves and the wave equation, boundary conditions, reflection and transmission, Snell’s law, polarization, monochromatic plane waves, energy and momentum in electromagnetic waves, electromagnetic waves in media, absorption and dispersion, wave guides, coaxial transmission lines. Potentials and Radiation: Gauge transformations, Coulomb and Lorentz gauges, retarded potentials, Jefimenko’s equations, Lienard-Wiechert potentials, field due to a moving charge, electric dipole radiation, power radiated by moving point charges.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In-class Tests</td>
<td>20%</td>
</tr>
<tr>
<td>Tutorial Assignments</td>
<td>20%</td>
</tr>
</tbody>
</table>

PHYS3470 – BIOLOGICAL PHYSICS (3 Credits)

Pre-requisite: PHYS3485 Theory of Statistical Mechanics.
Objectives: An exploration of the connection between physics and biological systems at all levels: molecular, organelle, cellular, organism and population.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In-class Tests</td>
<td>20%</td>
</tr>
<tr>
<td>Tutorial Assignments</td>
<td>20%</td>
</tr>
</tbody>
</table>

PHYS3475 – FUNDAMENTALS OF SOLID STATE PHYSICS (3 Credits)

Pre-requisite: PHYS2410 Modern Physics.

Objectives: A thorough grounding in the study of thermal, acoustic and electro-optical properties of crystals and amorphous solids

Syllabus: Bravais lattices, crystal planes and directions, Miller indices, types and classifications of crystal structure, interatomic forces and bonding, Bragg’s law, scattering from atoms and crystals, reciprocal lattice, x-ray diffraction, experimental techniques of diffraction, Ewald construction, elastic waves, phonons, density of states function, Einstein and Debye specific heats, limitations of Einstein and Debye models, conduction electrons, properties of the free electron gas, thermal conductivity, electrical conductivity, heat capacity of conduction electrons, Fermi surface, Hall effect, limitations of the free electron model, Bloch’s theorem, Brillouin zones, density of states, nearly free electron model, calculations of energy bands, metals, insulators, semiconductors, velocity and effective mass of Bloch electron, crystal momentum, holes, electrical conductivity, semiconductor statistics.
Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours) 60%
In-class Tests 20%
Tutorial Assignments 20%

PHYS3480 – THEORY OF QUANTUM MECHANICS (3 Credits)
Pre-requisite: PHYS2410 Modern Physics; PHYS2405 Mathematical Methods in Physics II

Objectives: Fundamentals of the formal theory of quantum mechanics with advanced mathematical treatment

Syllabus: Schrodinger’s equation, statistical interpretation of wave function, expectation values, normalization, momentum operator, Ehrenfest’s theorems, Heisenberg’s uncertainty principle, stationary states, construction of time dependent wave function from stationary states, infinite square well, harmonic oscillator, ladder operators, free particle, group velocity, versus phase velocity, Gaussian wave packet, finite square well, Hilbert space, inner products, eigenfunctions, eigenvalues, Dirac notation, Hermitian operators, Hermitian conjugate, continuous spectra, generalized uncertainty principle, commutators, time dependence of expectation values, spectral decomposition, Schrodinger’s equation in three dimensions, solution in spherical coordinates, angular and radial solutions, spherical infinite potential well, hydrogen atom, angular momentum operators, commutation relations, ladder operators for angular momentum, normalization, Pauli spin matrices, electron in a magnetic field, Larmour frequency, addition of angular momenta.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours) 60%
In-class Tests 20%
Tutorial Assignments 20%

PHYS3485 – THEORY OF STATISTICAL MECHANICS (3 Credits)
Pre-requisite: PHYS2410 Modern Physics; PHYS2400 Mathematical Methods in Physics I

Objectives: Fundamentals of the formal theory of statistical mechanics with advanced mathematical treatment and some applications.

Syllabus: Probable configurations of systems using spin models, entropy introduced as the logarithm of the number of accessible states, thermal equilibrium, temperature introduced as the derivative of entropy with respect to energy, law of increase of energy for isolated systems, Boltzmann distribution, partition
function, internal energy and heat capacity, pressure, Helmholtz free energy, quantum concentration, entropy of mixing, Planck distribution for a single mode, number of modes in a cavity, energy density and total internal energy, Stefan-Boltzmann law of radiation, energy flux density, equivalence of a black body to the cavity, absorptivity and emissivity, chemical potential, ideal gas, internal and external chemical potential with examples, derivation of the Gibbs distribution with examples, Fermi and Bose distributions, classical limit, derivation of properties of the ideal gas in the classical limit, entropy and the Sackur-Tetrode equation, heat capacity, internal energy, equation of state, ground state of the Fermi gas, Fermi energy, density of states, heat capacity of an electron gas, applications of the Fermi gas to white dwarf stars, Einstein condensation and the Einstein condensation temperature.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:
Final Theory Examination (2 hours) 60%
In-class Tests 20%
Tutorial Assignments 20%

PHYS3490 – PHYSICS ONE-SEMESTER RESEARCH PROJECT (3 Credits)
Pre-requisite: Restricted to final year students majoring in Physics.

Objectives: Application and development of Physics knowledge to research area for one-semester duration

Syllabus: In consultation with and under the supervision of a Faculty member, students are expected to define, investigate and report on an applied or theoretical research topic in Physics. The project itself is equivalent to a single Faculty course (3 credits) and must therefore reach that standard in terms of content and research effort. The research will be summarized in a written report by the student of approximately thirty (30) pages. The report submitted at the end of the semester will summarize the results and contain the following: introduction, method, apparatus, data, analysis of results including calculated uncertainties of the results, conclusion. An oral presentation shall be delivered by the student at the end of the semester to a panel of faculty members which includes the supervisor.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:
Written Report 70%
Oral Examination 30%

PHYS3495 – PHYSICS TWO-SEMESTER RESEARCH PROJECT (6 Credits)
Pre-requisite: Restricted to final year students majoring in Physics.
Objectives: Application and development of Physics knowledge to research area for two-semester duration

Syllabus: In consultation with and under the supervision of a Faculty member, students are expected to define, investigate and report on an applied or theoretical research topic in Physics. The project itself is equivalent to two Faculty courses (6 credits) and must therefore reach that standard in terms of content and research effort. The research during the first semester will be summarized in a written report by the student of approximately thirty (30) pages. The report submitted at the end of the semester will mainly concern the background for the research and progress that has been made during that semester. An oral presentation shall be delivered on these topics at the end of the semester to a panel of faculty members which includes the supervisor. At the end of the second semester, a final written report, also containing approximately thirty (30) pages, shall be submitted containing the following: introduction, method, apparatus, data, analysis of results including calculated uncertainties of the results, conclusion. A final oral presentation shall be delivered by the student at the end of the second semester to a panel of faculty members which includes the supervisor.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Written Report	(Semester I)	35%
Oral Examination	(Semester I)	15%
Written Report	(Semester II)	35%
Oral Examination	(Semester II)	15%
METEOROLOGY

LEVEL I METEOROLOGY COURSES

METE1110 - INTRODUCTION TO OCEANS AND CLIMATE (3 Credits)
Pre-requisites: None

Restriction: Not to be taken with ERSC1002 Oceans and Climate

Co-requisites*: METE1125: Meteorological Observations and Basic Analysis
METE1130: Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
(+ for Meteorology Majors and Minors ONLY)

Syllabus: This course is intended for students wishing to gain the essentials of climatology and oceanography. It is available to scientists and non-scientists alike. The course will provide information regarding the science of climate, the structure of the oceans, and the interaction of the ocean and the atmosphere as a driver of climate. Topics to be covered include the global radiation budget; heat and moisture transfer on the earth; the composition of the ocean; the chemical composition of the ocean; and ocean circulations.

Teaching: One (1) lecture; one (1) tutorial and two (2) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours) 60%
Theory: In-course Tests/Assignments 40%

METE1125 – METEOROLOGICAL OBSERVATIONS, INSTRUMENTS & BASIC ANALYSIS (3 Credits)
Co-requisites: None

Syllabus: This course is a yearlong 3-credit course in the practical aspects of meteorology. Topics to be covered include weather observations hands on approach to producing accurate weather observations, identifying weather symbols and the use of surface and upper air plotting models, use and maintenance of weather instruments; Use and interpretation of thermodynamic charts, scalar analysis, surface chart analysis, graphical subtraction and addition using analysis, calculation of geostrophic, gradient and thermal winds, frontal analysis, upper air analysis and analysis using current software packages.

Teaching: One (1) one (1) tutorial and two (2) hours of practical per week.
Method of Examination:

Coursework: 100%
Laboratory Exercises: 50%
Test: 50%

METE1135 – INTRODUCTION TO DYNAMIC METEOROLOGY (3 Credits)

Pre-requisites: CAPE Pure Mathematics Units 1 & 2 (or equivalent) & CAPE Physics Unit 1 (or equivalent).

Teaching: Two (2) lectures, and one (1) tutorial of practical per week.

Method of Examination:

Final Theory Examination (2 hours) 60%
In-course Tests/Assignments 40%

METE1130 – INTRODUCTION TO PHYSICAL METEOROLOGY (3 Credits)

Pre-requisites: CAPE Pure Mathematics Units 1 & 2 (or equivalent) & CAPE Physics Unit 1 (or equivalent).

Teaching: Two (2) lectures, and one (1) tutorial hour per week.

Method of Examination:

Final Theory Examination (2 hours) 70%
In-course Tests/Assignments 30%

METE1305 – INTRODUCTION TO CLIMATE CHANGE AND SOCIETY (3 Credits)

Pre-requisites: None

Restriction: Cannot be taken by majors and minors in Meteorology. Students are not allowed to take BOTH METE1200(or METE1110) and METE1305 for credit.
Syllabus: The biosphere: definition, evolution and contributions to climate and climate change. Global climate change with particular reference to the Caribbean region; the influence of climate change on biodiversity, livelihoods, population displacement, energy, food security, health and economic activity, global climate change policies and initiatives and the Caribbean region’s evolving adaptation to climate change strategy.

Teaching: Two (2) lectures, one (1) tutorial hour per week.

Method of Examination:

Final Theory Examination (2 hours) 60%
In-course Tests/Assignments 40%

LEVEL II METEOROLOGY COURSES

METE2110 – ATMOSPHERIC THERMODYNAMICS (3 Credits)

Pre-requisites: MATH1190 Calculus A & MATH1195 Calculus B (or MATH1120 Calculus I & MATH1130 Calculus II); METE1110 Introduction to Oceans and Climate; METE1125 Meteorological Observations, Instruments and Basic Analysis; METE1130 Introduction to Physical Meteorology and METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (2 hours) 50%
In-course Tests/Assignments 50%
METE2120 - PHYSICAL METEOROLOGY (3 Credits)

Pre-requisites: MATH1190 Calculus A & MATH1195 Calculus B (or MATH1120 Calculus I & MATH1130 Calculus II); METE1110 Introduction to Oceans and Climate; METE1125 Meteorological Observations, Instruments and Basic Analysis; METE1130 Introduction to Physical Meteorology and METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:
- Final Theory Examination (2 hours) 50%
- In-course Tests/Assignments 50%

METE2100 - DYNAMIC METEOROLOGY I (4 Credits)

Pre-requisites: MATH1190 Calculus A & MATH1195 Calculus B (or MATH1120 Calculus I & MATH1130 Calculus II); METE1110 Introduction to Oceans and Climate; METE1125 Meteorological Observations, Instruments and Basic Analysis; METE1130 Introduction to Physical Meteorology and METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Co- requisites: PHYS2400 Mathematical Methods in Physics I

Syllabus: Elementary vector methods in meteorology. Derivation of the equation of motion from Newton's law. The equation of motion in various co-ordinate systems. Simplification of the equation of motion. The conservation of mass and the conservation of total energy. The basic equations with pressure as the vertical coordinate. Horizontal balanced motions; the geostrophic thermal wind.
Concepts of circulation and vorticity; the circulation theorems and the vorticity equation and their applications. Structure and dynamics of the planetary boundary layer.

Teaching: Three (3) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (2 hours) 70%
In-course Tests/Assignments 30%

METE2200 - SYNOPTIC METEOROLOGY I (4 Credits)

Pre-requisites: MATH1190 Calculus A & MATH1195 Calculus B (or MATH1120 Calculus I & MATH1130 Calculus II); PHYS2400 Mathematical Methods in Physics I; METE1110 Introduction to Oceans and Climate; METE1125 Meteorological Observations, Instruments and Basic Analysis; METE1130 Introduction to Physical Meteorology and METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Teaching: Two (2) lectures and four (4) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours) 60%
In-course Tests/Assignments 40%

METE23XX - HYDRO-METEOROLOGY FUNDAMENTALS (3 Credits)

Pre-requisites: MATH1190 Calculus A & MATH1195 Calculus B (or MATH1120 Calculus I & MATH1130 Calculus II);

Teaching: One (1) lectures, one (1) tutorial and two (2) hours of practical per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>60%</td>
</tr>
<tr>
<td>In-course Tests/Assignments</td>
<td>40%</td>
</tr>
</tbody>
</table>

METE2950 METEOROLOGY ELECTIVE (4 Credits)

Pre-requisites: None

Syllabus: An advanced course in Meteorology taken as an exchange student at an approved institution and pre-approved by the Dean.

LEVEL III METEOROLOGY COURSES

METE3100 - DYNAMIC METEOROLOGY II (4 Credits)

Pre-requisites: METE2100 Dynamic Meteorology I & METE2200 Synoptic Meteorology I

Syllabus: The dynamics of developing synoptic scale systems in mid-latitudes. The theory and behaviour of pure wave motions in the atmosphere. Introduction to numerical weather prediction; barotropic and filtered baroclinic models; primitive equation models. The physical basis of baroclinic instability and cyclogenesis. The energy cycle and momentum budget of the atmosphere.

Teaching: Three (3) lectures and one (1) tutorial per week.

Method of Examination:

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination (2 hours)</td>
<td>70%</td>
</tr>
<tr>
<td>In-course Tests/Assignments</td>
<td>30%</td>
</tr>
</tbody>
</table>

METE3200 - SYNOPTIC METEOROLOGY II (4 Credits)

Pre-requisites: METE2100 Dynamic Meteorology I and METE2200 Synoptic Meteorology I

Syllabus: The Polar front jet stream - structure and characteristics and its role in mid-latitude development. The pressure tendency equation and its applications. Four-dimensional analysis of mid-latitude synoptic systems; use of thickness maps, sounding and cross-sections. Theories of mid-latitude cyclone development; Characteristic and formation of cut-off cyclones, upper level anticyclones, and blocking systems; Development theories associated with polar lows and dry lines;
Familiarization with and use of numerical products and satellite and radar data in analysis and forecasting.

Teaching: Two (2) lectures and four (4) hours of practical per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In-course Tests/Assignments 40%

METE3300 - TROPICAL METEOROLOGY (4 Credits)

Pre-requisites: METE2100 Dynamic Meteorology I and METE2200 Synoptic Meteorology I

Teaching: Two (2) lectures and four (4) hours of practical per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In-course Tests/Assignments 40%

METE3400 - WEATHER RADARS AND SATELLITES (4 Credits)

Pre-requisites: METE2110 Atmospheric Thermodynamics, METE2120 Physical Meteorology (or METE2000 Physical Meteorology I, METE2001 Physical Meteorology II) and METE2200 Synoptic Meteorology I

Teaching: Two (2) lectures, one (1) tutorial and two (2) hours of practical per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In-course Tests/Assignments 40%

METE35XX - CLIMATE, BIOSPHERE AND ECOSYSTEMS (3 Credits)

Pre-requisites: METE1110 Introduction to Oceans and Climate or METE1200 Oceans & Climate or BIOL1051 Biodiversity 1 and 28 FST Level II/III credits.

Teaching: Two (2) lectures, and two (2) hours of practical per week.

Method of Examination:
- Final Theory Examination (2 hours) 60%
- In-course Tests 10%
- Essay Assignment & Computer Exercises 30%